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FROM GLOBAL FRESHWATER TURTLE TELEMETRY TO LOCAL 

CONSERVATION: THE SPATIAL ECOLOGY OF PODOCNEMIS UNIFILIS IN THE 

MIDDLE XINGU RIVER 

 

 

ABSTRACT 

Freshwater turtles are among the most threatened vertebrates globally, and understanding their 

spatial ecology is essential for conservation, especially in river systems affected by hydrological 

alteration. In this context, the objectives of this Thesis were to: (i) identify global trends, gaps, 

and methodological approaches in telemetry-based studies of freshwater turtles; (ii) investigate 

seasonal movement patterns, directional orientation, and space use of Podocnemis unifilis in a 

dam-regulated Amazonian river; and (iii) estimate home range areas using multiple methods to 

evaluate spatial responses to altered hydrology in the Xingu River basin. In Chapter I, we have 

conducted a systematic review of telemetry studies on freshwater turtles worldwide, analyzing 

104 articles published from 1980 to 2022 using the PRISMA protocol. Our findings showed an 

increase in studies in recent decades, with radiotelemetry being the most widely used method 

and home range estimation the most common objective. Despite progress, most studies were 

conducted in anthropogenic landscapes and only a small proportion focused on threatened 

species, highlighting critical research gaps in tropical regions and conservation priorities. In 

Chapter II, we have used satellite telemetry to monitor 32 adult P. unifilis in three longitudinal 

sectors of the middle Xingu River between 2017 and 2022. We have assessed movement metrics, 

azimuthal orientation, and habitat use across hydrological seasons. Results revealed that females 

traveled longer distances than males, although no significant sex or seasonal differences were 

detected. Directional analyses did not show alignment toward nesting beaches. However, spatial 

behavior varied seasonally, with localized movements and site fidelity during low-water periods 

and broader space use during floods, especially in upstream and midstream areas. These findings 



 

suggest that hydrological connectivity drives spatial dispersal. In Chapter III, we have estimated 

home range sizes using five spatial methods (MCP, KDE, AKDE, LoCoH, dBBMM). Home 

range size varied greatly among individuals but showed no consistent effect of sex or season. 

However, turtles in the upstream reservoir had larger home ranges, while those in the midstream 

sector (Volta Grande) showed restricted movements. These results highlight the species spatial 

plasticity but also its vulnerability to habitat fragmentation caused by flow regulation. 

 

Keywords: freshwater turtles, Podocnemis unifilis, movement ecology, satellite telemetry, home 

range, Amazon, dam impacts. 

  



 

RESUMO 

Os quelônios de água doce estão entre os vertebrados mais ameaçados globalmente, e 

compreender sua ecologia espacial é essencial para a conservação, especialmente em sistemas 

fluviais impactados por alterações hidrológicas. Neste contexto, os objetivos desta Tese foram: (i) 

identificar tendências globais, lacunas e abordagens metodológicas em estudos com telemetria 

aplicados a quelônios de água doce; (ii) investigar os padrões sazonais de movimentação, 

orientação direcional e uso do espaço de Podocnemis unifilis em um rio amazônico regulado por 

barragem; e (iii) estimar áreas de vida utilizando múltiplos métodos para avaliar as respostas 

espaciais da espécie frente às alterações hidrológicas na bacia do rio Xingu. No Capítulo I, 

realizamos uma revisão sistemática de estudos com telemetria em quelônios de água doce 

publicados entre 1980 e 2022, seguindo o protocolo PRISMA. Os resultados revelaram um 

aumento no número de estudos nas últimas décadas, com predominância da radiotelemetria e foco 

na estimativa de área de vida. Apesar dos avanços, a maioria dos estudos foi conduzida em 

paisagens antropizadas e apenas uma pequena proporção focou em espécies ameaçadas, 

evidenciando lacunas críticas em regiões tropicais e prioridades conservacionistas. No Capítulo II, 

utilizamos telemetria via satélite para monitorar 32 indivíduos adultos de P. unifilis em três setores 

longitudinais do médio rio Xingu entre 2017 e 2022. Analisamos métricas de deslocamento, 

orientação azimutal e uso do habitat ao longo das estações hidrológicas. As fêmeas percorreram 

distâncias maiores que os machos, embora sem diferenças estatísticas significativas. As análises 

direcionais não revelaram orientação em direção às praias de desova. No entanto, o 

comportamento espacial variou sazonalmente, com movimentos localizados e fidelidade espacial 

na seca, e expansão do uso do espaço nas cheias, ainda que de maneira não significativa, 

especialmente nos setores montante e intermediário, sugerindo que a conectividade hidrológica é 

um fator determinante para a dispersão espacial. No Capítulo III, estimamos as áreas de vida por 

cinco métodos espaciais (MCP, KDE, AKDE, LoCoH, dBBMM). As áreas variaram amplamente 

entre os indivíduos, sem efeito significativo de sexo ou estação. Contudo, os indivíduos no 

reservatório montante apresentaram maiores áreas de vida, enquanto aqueles na Volta Grande 



 

mostraram movimentação restrita. Esses resultados evidenciam a plasticidade espacial da espécie, 

mas também sua vulnerabilidade à fragmentação do habitat imposta pela regulação do fluxo. 

 

Palavras-chave: quelônios de água doce, Podocnemis unifilis, ecologia de movimento, telemetria 

via satélite, área de vida, Amazônia, impactos de barragens
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INTRODUÇÃO GERAL 

 

A conservação de quelônios de água doce enfrenta desafios globais, dado que muitas 

espécies sofrem declínios populacionais acentuados e estão ameaçadas pela caça, perda de 

habitat e outras pressões antrópicas (Tortoise, & Freshwater Turtle Specialist Group, 

1989, Buhlmann et al., 2008; Stanford et al., 2020; Barcenas-Garcia et al., 2022). Compreender 

a ecologia espacial desses animais, isto é, como se movimentam, utilizam habitats e distribuem 

suas atividades, é fundamental para embasar estratégias de manejo eficazes e direcionados 

(Allen et al., 2016; Ogbun et al., 2017; Fletcher & Fortin, 2018). Nesse contexto, a telemetria se 

apresenta como uma ferramenta valiosa, permitindo o acompanhamento remoto dos 

deslocamentos de animais em tempo real ou quase real (Mayo-Wells, 1963; Pride & Schift, 

1992; Kimley, 2013; Cooke et al., 2013; Hussey et al., 2015; Lennox et al., 2017). Em relação a 

aplicação da telemetria para estudos com quelônios de água doce, observa-se uma tendência de 

crescimento significativo, como evidenciado em Ribeiro et al., 2024. No entanto, evidencia-se 

também a necessidade de expandir os estudos de movimentação, especialmente para espécies 

sob maior risco. 

Na Amazônia, um dos grupos de quelônios de água doce de destaque é a família 

Podocnemididae, que inclui grandes espécies fluviais (Gaffney et al., 2011). Podocnemis unifilis, 

conhecida como tracajá, é uma espécie de médio porte amplamente distribuída na América do 

Sul ocorrendo no Brasil e países vizinhos (Vogt, 2008; Ferrara et al., 2017). Embora amplamente 

distribuído, o tracajá tem sofrido declínios populacionais severos em diversas regiões. Entre as 

principais ameaças estão a sobre-exploração para consumo (carne e ovos) e comércio ilegal 

(Alho, 1985; Rebello and Pezzutti, 2000; Fachín-Terán et al., 2004; Pezzutti et al., 2010), a 

perda e degradação de habitats (Conway-Gómez, 2007), inclusive pela construção de 

hidrelétricas (Barcenas-Garcia et al., 2022a, 2022b), poluição (como contaminação por 

mercúrio; Souza-Araujo et al., 2015; Pignati et al., 2018) e mudanças climáticas (Da Silva et al., 

2025). Devido à sua longevidade e maturação tardia, P. unifilis é particularmente vulnerável a 
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essas pressões, sendo classificada como espécie Vulnerável nas listas de conservação nacionais e 

internacionais (MMA, 2022; IUCN, 2024).  

Apesar de sua importância, o conhecimento científico sobre a ecologia espacial do tracajá 

ainda é incipiente. Historicamente, poucos estudos buscaram avaliar os padrões de movimento 

de espécies de Podocnemididae, e a maioria concentrou-se na tartaruga-da-amazônia 

(Podocnemis expansa) usando radiotransmissores VHF somente mais recentemente, quando 

tecnologias como rastreamento por satélite começaram a ser aplicadas a quelônios amazônicos 

(Guilhon et al., 2011). No caso específico de P. unifilis, o conhecimento sobre seus padrões de 

movimentação permanece limitado a poucos estudos (e.g. Naveda-Rodrigues et al., 2018; Ponce 

de Leão et al., 2019; Hilderaker, 2021). Sabe-se que no regime natural de rios amazônicos, as 

variações sazonais do nível da água exercem forte influência no comportamento espacial desses 

quelônios (Naveda-Rodrigues et al., 2018; Ponce de Leão et al., 2019). Entretanto, não existiam 

estudos específicos sobre os movimentos de P. unifilis no rio Xingu até recentemente. Essa 

lacuna é preocupante, pois o rio Xingu representa um habitat com alta biodiversidade e vem 

passando por rápidas transformações ambientais nos últimos anos (Fearnside, 2015).  

A presente pesquisa buscou integrar o conhecimento global sobre telemetria em 

quelônios de água doce com uma aplicação local voltada à conservação do tracajá no médio 

Xingu. Para isso, esta Tese foi estruturada em três capítulos que se complementam. No Capítulo 

1, realizamos uma revisão sistemática global sobre o uso de telemetria em quelônios de água 

doce, mapeando as tendências, principais abordagens e lacunas nesse campo. Esse capítulo 

preenche a necessidade de uma síntese abrangente da literatura, revelando, por exemplo, quais 

regiões e espécies foram mais estudadas e quais permanecem negligenciadas. No Capítulo 2, 

nos concentramos na ecologia de movimento do tracajá no médio rio Xingu, por meio de um 

estudo de telemetria de campo. Neste capítulo investigamos as distâncias percorridas, a 

direcionalidade dos deslocamentos e diferenças sazonais e entre sexos no padrão de 

movimentação da espécie. Essa investigação local atende à lacuna de informação sobre como P. 

unifilis se comporta espacialmente em um trecho específico da Amazônia (até então inédito na 

literatura). No Capítulo 3, por fim, realizamos uma análise detalhada da área de vida (home 
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range) de P. unifilis no médio Xingu, utilizando dados de telemetria por satélite em um contexto 

ambiental fragmentado.  

Em conjunto, os três capítulos fornecem uma visão escalonada do global ao local. A 

revisão global identificou lacunas e reforçou a importância da telemetria para a conservação de 

quelônios, justificando a realização de estudos locais em espécies e áreas pouco exploradas. O 

estudo no Xingu gerou dados ecológicos inéditos sobre os movimentos sazonais do tracajá, 

enquanto a análise de área de vida ofereceu insights aplicados para o manejo da espécie em rios 

sob impacto de barragens. Ao integrar esses resultados, esta Tese contribui para preencher as 

lacunas de conhecimento sobre a ecologia espacial do P. unifilis, fornecendo bases científicas 

para ações de conservação mais eficazes, tanto no âmbito regional (bacia do Xingu) quanto em 

um contexto amazônico mais amplo. 
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 27 

The study focused on advancing techniques for understanding freshwater turtle movement, 28 

aiding decision-making and management strategies against various threats. The systematic 29 

review, using the PRISMA protocol, identified 104 articles from 1980 to 2022, with a 30 

notable recent increase. Radiotelemetry was the predominant technique in tracking turtle 31 

movement, and the evaluation of species' home range was the most recurrent study type. 32 

The research covered 33 freshwater ecoregions, with a concentration in anthropized areas. 33 

Notably, only 16.2% of all endangered freshwater turtle species and 11.4% threatened by 34 

international trade were studied. Despite this, there's a growing trend toward conservation 35 

efforts. The study underscores the importance of telemetry as a vital tool for understanding 36 

and conserving freshwater turtle ecology, revealing trends and gaps in research. 37 

 38 

ABSTRACT 39 

 40 

The improvement of techniques and analyses to understand the movement of freshwater 41 

turtles has helped managers in decision-making and the establishment of management 42 

strategies for these animals, which suffer numerous threats. We analyzed the available 43 

scientific literature on the use of telemetry in the study of the movement ecology of 44 

freshwater turtles, seeking to assess the most commonly used approaches. To this end, we 45 

carried out a systematic review of articles published until December 2022 using the 46 

PRISMA protocol. We found 104 articles published between 1980 and 2022, with a clear 47 

increase in the number of publications in later years. We found publications in 40 journals 48 

with 295 authors, 150 institutions and 261 keywords. Three countries had major 49 

contributions, and we found studies with 50 species, the most recurrent being Emydoidea 50 

blandingii and Glyptemys insculpta. The most commonly used technique to study turtle 51 
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movement was radiotelemetry. The use of Minimium Convex Polygon - MCP and Kernel 52 

Density Estimation - KDE was present in 56% of the studies in the last 10 years, and the 53 

evaluation of the home range of the species was the most recurrent type of study. The 54 

studies covered 33 freshwater ecoregions, and although most studies were carried out in 55 

anthropized areas, covering only 16.2% of all endangered freshwater turtle species and 56 

11.4% of all threatened by international trade, the conservation approach has been 57 

increasingly recurrent. Our results highlight trends and gaps in the study of the ecology of 58 

freshwater turtle movements and highlight the importance of telemetry as an essential tool 59 

for species conservation. 60 

 61 

KEY WORDS: scienciometry, chelonians, movements, home range, tracking. 62 
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Telemetry in Movement Ecology of Turtles 

 

INTRODUCTION 

 

Animals exhibit movement patterns in search of places with greater availability 

of resources (Pough et al. 2001), and these resources can be diverse: shelter, food, 

sexual partners, thermoregulation and reproduction sites, as in the case of turtles 

(Fachín-Téran et al. 1995). Typically, for freshwater turtles, movement patterns are 

mainly influenced by annual variation in water availability (Prance 1979; Junk et al. 

1989; Ossa-Velasquez and Vogt, 2011) but can also be associated with habitat changes, 

such as precipitation, water temperature, water level, or chemical pollution (Iverson, 

1992; Fachín-Terán et al. 2006). 

Several approaches have been used to study the spatial distribution and habitat 

use of freshwater turtles, the most common being those involving capture-recapture 

(Plummer 1977; Obbard and Brooks, 1981; Liuzzo et al. 2021), thread-bobbins (Carter 

et al. 2000; Kaye et al. 2005; Famelli et al. 2016) and, more recently, acoustic tracking 

(Micheli-Campbell et al. 2017) and radiotelemetry (Roe and Georges 2008), although 

each has some limitations. 

The study of the movement, habitat use and home range of freshwater turtles is 

still incipient, and most of these studies were carried out in a certain period of the year 

(Magnusson et al. 1997; Fachín-Terán et al. 2006; Ponce de Leão 2019). 

Radiotelemetry is one of the main tools used to study the movement patterns of animals 

(White and Garrott 1990; Chow-Fraser 2014), but generally, this method is quite labor 

intensive, as it requires the presence of the researcher for all tracking efforts (Chow-

Fraser 2014), which can make it impossible to collect data during all periods of the year 
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(Rowe and Moll 1991; Dowling et al. 2010; Luschi and Casale 2014; Chow-Fraser 

2014; Cochrane et al. 2019). Although this tracking frequency is necessary to generate 

enough data to accurately map an animal's home range (Swihart and Slade 1985; Kie et 

al. 2010), the presence of the researcher can affect the animal's natural movements; 

therefore, radio tracking is not ideal for determining habitats that are rarely used or only 

used for short periods (e.g., travel corridors). 

In the last 20 years, satellite telemetry has led to progress in the knowledge of 

movement ecology (Tomkiewicz et al. 2010; Chow-Fraser 2014; Cochrane et al. 2019), 

as this technique allows the reconstruction of the real routes followed by marked 

individuals (Godley et al. 2008; Guilhon et al. 2011), allowing their follow-up 

throughout the year, with no need to go to the field (except to initially apply 

transmitters, change devices or batteries). Combined with traditional radio tracking, 

researchers were able to increase the frequency and spatial resolution of the collected 

data (Schwartz and Arthur 1999; Cagnacci 2010). While on the one hand, the technique 

is considered to be more expensive than others (Cochrane et al. 2019), on the other 

hand, it enables obtaining very detailed information about the spatial behavior of 

individuals belonging to different life stages and about the main characteristics of the 

movements performed by individuals in their natural environment (Luschi et al, 2014). 

Along with technological advances, the last decade has also seen conceptual and 

analytical advances to study species movement with the use of different techniques and 

methods (Nathan et al. 2008). 

Freshwater turtles are widely distributed in rivers and lakes around the world 

(Campbell et al. 2013) and represent one of the most threatened groups of vertebrates 

on the planet, with over 300 known species (Bour 2008; Uetz 2022). Approximately 

60% of them fall under some degree of threat, and global efforts are needed to prevent 
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the extinction of these charismatic animals (Turtle Conservation Fund 2007; IUCN 

2022). Freshwater turtles have suffered a serious decline in recent years, and some 

species may no longer exist in the next century (Buhlmann et al. 2009; Hoffmann et al. 

2010) due to numerous threats, such as habitat loss, the introduction of invasive 

predators (Rhodin et al. 2018), exploitation for food, traditional medicine and 

unregulated trade (Smith, 1979; Gibbons et al. 2000; Hernandez and Spin 2003; Turtle 

Conservation Fund 2007; CITES 2022; IUCN 2022), although there is a historical and 

social relationship with the consumption of some species (Rêbello and Pezzutti 2000; 

Carvalho et al. 2021; Da Silva et al. 2022). 

Movement patterns and range of use are not yet known for many species of 

freshwater turtles. It is essential to know the life history of the species and investigate 

how individuals move (Gibbons 1990; Roe et al. 2008, 2009; Godley et al. 2003) and to 

align technological advances in the study of movement with the objective of defining 

appropriate conservation measures for species of conservation interest, especially those 

listed on the Red List of Threatened Species of the International Union for the 

Conservation of Nature (IUCN) (Luschi and Casale,2014; Allen and Singh 2016; IUCN 

2022). In this work, we synthesized studies that evaluated the use of telemetry in 

freshwater turtles around the world. Our objective was to identify research trends and 

gaps in current knowledge and discuss the importance of using telemetry in the 

conservation of freshwater turtles. We hope to observe an evolution in the use of 

techniques, equipment, and analyses employed to comprehend the movement patterns of 

freshwater turtles. Additionally, we aim to understand how the application of telemetry 

can significantly contribute to global conservation efforts for turtles, particularly in 

freshwater ecoregions. 
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METHODS 

 

Literature Review 

We used the step-by-step approach proposed by Khan et al. (2003) and Pullin et 

al. (2006) for a systematic review. Additionally, we used the Preferred Reporting Items 

for Systematic Reviews and Meta-Analyses Standard Method (PRISMA; Moher et al. 

2015). This method has been commonly used in systematic review studies on various 

subjects (Velamazan et al. 2020; Calzetta et al. 2020; Tidman et al. 2021; O'Dea et al. 

2021; Mathwin et al. 2021) and consists of a robust protocol with 27 items that must be 

verified so that the risk of bias is minimized (Moher et al. 2015). Literature sources 

were accessed through the SCOPUS (www.scopus.com), Web of Science (WoS) and 

Google Scholar databases. These three databases were selected to allow greater 

coverage of the results (Fingerman 2006; Mongeon and Paul-Hus 2016), since results 

may vary depending on the database used (Gavel and Iselid 2008; Vieira and Gomes 

2009). 

We limited the search to articles published in peer-reviewed journals until July 

2022, using a series of keywords combined to search for work done on the ecology of 

movement in freshwater turtles. For this, the following keywords were searched for in 

the databases: ((turtle OR chelonian) AND (freshwater* OR river*) AND (telemetry 

OR radiotelemetry OR satellite)) (Table 1). All Scopus and Web of Science results were 

considered, and in the case of Google Scholar, only the results of the first 30 pages were 

considered (Haddaway et al. 2015; Crane et al. 2021). 

For inclusion, they had to meet the following eligibility criteria: 1) related to the 

movement of freshwater turtles; 2) aquatic and semiaquatic species only; 3) studies 

using an attached telemetry device (e.g., VHF transmitters, GPS transmitters); 4) peer-

reviewed articles; and 5) studies available in full. We also added articles from personal 
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libraries that fell within the scope of our study. Duplicates, false positives, and non-

peer-reviewed "gray" literature based on title and abstract or main text if relevance was 

not clear in the abstract were removed (Jeffers et al. 2016). 

Considering that many times, the same study makes comparisons between 

methods and analyzes and seeks to respond to more than one pattern of movement, we 

decided to use all this information. In this way, these were also considered in the 

descriptive analyses as different studies, but we did not consider them in the statistical 

analyses. Behavioral studies were considered as long as they addressed the movement 

of individuals using telemetry. Studies that were not directly related to the movement of 

individuals, such as essays, theoretical discussions and studies with genetic, 

physiological and morphological approaches, were excluded. 

 

Literature analysis 

 Current species and habitat nomenclature followed Uetz et al. (2022). For each 

article, the following information was extracted: I) general characteristics: year of 

publication, name of the journal, impact factor, first author and institution, keywords 

used, species and study topic; II) location: country, geographic coordinates and place of 

study; III) movement variables: movement analysis (how the movement was measured), 

the method used and IV) conservation: threat degree, 

inclusion/discussion/recommendations on conservation issues and whether the study 

was carried out in a protected or anthropized area. Among the methodological options 

related to movement, there are variations dealt with in the literature, such as the kernel 

method: fixed kernel method (Rowe et al. 2009), fixed kernel estimates (Forero-Medina 

et al. 2011), fixed kernels (Refsnider et al. 2012a, b); and the minimum convex polygon 

method (MCP) 100% (Ponce De Leão et al. 2019) and MCP 90% (Wallace et al. 2020). 
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We standardized these methods as the kernel method (KM), minimum convex polygon 

(MCP), linear home range (LHR), and statistical analysis for those who used only 

statistical analysis to determine movement and ―others‖. 

Studies that only sought to describe the movement of species as maximum 

distance traveled and average distance were grouped in descriptive analyses. Regarding 

the types of study, we also have a diversity, such as terrestrial movements, migration, 

Hibernacula, and habitat selection, among others. The studies were standardized and 

grouped into seasonal movements, home range, movement patterns and habitat use. 

Studies that involved motion ecology using telemetry but did not have specific analyses 

to determine motion were grouped under technical analysis and descriptive analysis. 

When the same article studied several species and used several techniques and analyses, 

the same article was included several times in the presented study counts. 

To query the impact factor, we used the latest JCR Impact Factor 2022 provided 

by the Journal Citation Report (JCR). The coordinates taken from the studies were 

superimposed on shapefiles, and a map was created using ArcGis® software. When 

coordinates were not available in the article, we extracted an approximate coordinate for 

the indicated region through Google Earth®. 

  

Data analysis 

 In addition to the descriptive analyses represented in graphs and tables, we 

sought to verify whether the number of publications on the ecology of freshwater turtles' 

movement has increased over the years through Spearman correlation analysis (Zar 

1999). The same analysis was used to verify whether older studies are more cited and 

whether the representativeness of studies and species studied in each family is 

correlated to existing species (Bárcenas-Garcia et al. 2022). Specifically, for the 
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analysis of keyword patterns, a ―word cloud‖ was built using the Wordcloud package 

(Fellows et al. 2018). To understand the collaborative relationships between researchers 

and institutions, coauthorship networks were built (Barabási et al. 2002; Tomassini and 

Lutti 2007) using VOSviewer software. To see if there was a relationship between 

publication and if conservation was discussed in the articles, a Spearman correlation 

was performed. The conservation status of the species was taken from the IUCN (IUCN 

2022) and the Convention on International Trade in Endangered Species of Wild Fauna 

and Flora – CITES (https://cites.org/eng; CITES 2022). We also sought to identify 

whether studies had been carried out in the world's freshwater ecoregions (Abell et al. 

2000a, 2000b, 2002, 2008; FEOW 2023). All analyses were performed using R software 

(R Core Team 2021), and results with a probability lower than 0.05 (P<0.05) were 

considered significant (Zar 1999). 

 

RESULTS 

 

When and what studies have been carried out thus far?.  

From 575 unique articles returned from the literature searches (Fig.1), our 

exclusion criteria produced a final sample of 104 studies using freshwater turtle 

monitoring devices (see Supplementary material). There was a slight increase in the 

number of publications from 2006 onwards, with the first study registered in 1980 (Fig. 

2A). Significant differences were also found in the number of publications over the 

years (Spearman‘s Rs = 0.67, p < 0.001). Despite this, between 1980 and 1990, no 

studies were found based on the chosen criteria. Publications from the last ten years 

(2013 to July 2022) correspond to 53% of the total publications. The year with the 
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highest number of publications was 2019, with 11 published works, followed by 2018, 

with seven works. 

The 104 articles found were published in a total of 40 journals. Of these 

journals, ―Chelonian Conservation and Biology‖ was the most relevant in terms of the 

number of publications corresponding to 18.26% of the works, followed by the 

―Journal of Herpetology‖ corresponding to 11.53% and ―Copeia‖ with 10.57% of 

publications. The journal with the highest impact factor is ―Copeia‖, followed by 

―Journal of Herpetology‖ and ―Chelonian Conservation and Biology‖. Only the 

Herpetological review had no impact factor (Table 2). 

 The average number of citations per document was 35.25, ranging from 0 to 372. The 

study with the highest number of citations was the one published by Compton et al. 

(2002) in the journal ―Ecology‖ (372 citations). In this work, the authors used radio 

transmitters as a tool to model habitat selection within the range of Glyptemys insculpta. 

The second study with the highest number of citations was carried out by Burke and 

Gibbons (1995) and published in the journal ―Conservation Biology‖ (319 citations), 

where telemetry was used to assess the habitat requirements of three species of 

freshwater turtles (Kinosternon subrubrum, Pseudemys floridana and Trachemys 

scripta). We observed that older studies were more cited (Spearman's Rs = - 0.60, p < 

0.001; Fig. 2.). The total number of keywords used by the authors was 270. The two 

most frequent keywords were Home range (n = 26) and Turtle (n = 18), followed by 

Conservation and Radiotelemetry (n = 11) and Movement (n = 10) (Fig. 3). 

 

Who's tracking what and where?.  

Of the 295 different authors that appeared in all 104 articles surveyed, the author 

with the highest number of collaborations was Sterrett, S. (total link strength = 11) from 
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Monmouth University, based in New Jersey, USA; Smith L. L. (total link strength = 11) 

from the Joseph W. Jones Ecological Research Center, based in Georgia, USA and 

Georges A. (total link strength = 10) from the University of Canberra, based in 

Canberra, Australia. Tornabene, Bramblett and Brown presented a total link strength of 

nine, while the other authors presented fewer than eight collaborations. Of the total, 

eight authors worked individually, and 35 authors worked with at least one coauthor 

(Fig. 4A). 

Regarding the institutions, 150 participated in the 104 articles surveyed. The 

institutions with the highest number of collaborations were the University of Louisville 

(total link strength = 26), the University of Maine (total link strength = 25), the 

University of Illinois (total link strength = 18), and the National Research Institute of 

the Amazon and Maine Department of Inland Fisheries and Wildlife (total link strength 

= 12). The other institutions presented a total of fewer than 10 collaborations. Of the 

total, 10 institutions produced the articles individually, and 15 institutions worked in 

partnership with only one other institution (Fig. 4B). Regarding the countries with the 

greatest relevance in scientific production related to the subject, the United States 

represented more than half of the studies (57%), followed by Canada (14%) and Brazil 

(6.7%) (Fig. 5). 

In total, 50 species have studies related to the use of telemetry to measure 

aspects of turtle movement ecology. Of these, the most studied were Emydoidea 

blandingii, present in 16 works, and Glyptemys insculpta, present in 15 articles. The 

most representative family was Emydidae, with 36% of the species studied, followed by 

the family Kinosternidae (16%). The Carettochelydae and Platysternidae family (2%, n 

= 1) was the least studied family and the most underrepresented Geoemydidae (Table 3) 

in relation to the diversity of existing aquatic turtles (Rhodin et al. 2018; Uetz et al. 
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2022) (Table 3). Although there was a weak positive relationship, the number of studies 

was not significantly correlated with the number of existing species in each family 

(Spearman's Rs = 0.32, p = 0.32; Fig. 6A). The number of species studied in each family 

was also not significantly correlated with the number of species in each family 

(Spearman‘s Rs = 0.56, p = 0.08; Fig. 6B) and followed a similar pattern to the number 

of studies, with most species of Emydidae most frequently studies. 

 

How were the studies done and how were they evaluated?. 

 Telemetry devices (VHF) were cited in 98 of the analyzed studies of freshwater 

turtles, and only nine satellite devices (GPS) were used (Fig. 7A). The first study using 

satellite radio (GPS) is quite recent (2011), when this method was used to monitor the 

nesting of 10 female Podocnemis expansa in the Trombetas Biological Reserve, Rio 

Trombetas, Brazil (Guilhon et al. 2011). The use of statistical analysis, without pairing 

it with estimates via MCPs and KDEs, dominated the studies (n = 20). Next, the use of 

minimum convex polygons (MCPs) and kernel density estimates analysis (KDE) were 

present in more than 56% of the studies in the last 10 years. Studies often include 

estimates from both methods and rarely use KDEs without including MCPs. Several 

studies (n = 20) used descriptive analyses and did not include KDE and MCP analyses 

or statistical analyses (Fig. 7B). Eight studies used the linear home range (LHR) 

method, and a minority of studies (n = 2) used 'other' methods without pairing with 

estimates via MCPs and KDEs. These methods included the minimum polygon area 

method (MAP) to assess the home range of Graptemys flavimaculata and Polly buff to 

assess the home range of Chelydra serpentina (Fig. 7B). This method consists of 

combining the areas within minimal convex polygons calculated around the aquatic 

locations of each individual and was developed for studies with aquatic turtles by 
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accurately matching aquatic areas of activity with terrestrial movement paths and 

therefore is more biologically and behaviorally effective (Harmenick, 2001; Harmenick 

et al. 2020). 

The home range of the species was evaluated in 51 studies, followed by 

movement patterns evaluated in 28 studies, habitat use in 20 studies, seasonal 

movements in 17 studies and linear home range in eight studies. Finally, two studies 

sought to compare Techniques Analysis (Sattelite radio and VHF Transmitters) (Fig. 

7C). 

 

What are the contributions of studies to the conservation of species?. 

Almost half of the species surveyed in articles related to the use of telemetry in 

the ecology of freshwater turtle movement are classified as threatened (44%), but they 

represent only 16.2% of all endangered freshwater turtle species, while 26% are 

categorized as least concern (LC) and near threatened (NT). Only one species 

(Podocnemis expansa) is considered Conservation Dependent (CD); that is, the species 

is characterized as facing lower risk but needs conservation efforts to avoid becoming a 

threatened species (Fig. 8A). Regarding CITES, 42% of the species are part of one of 

the annexes (I, II or III) and represent only 11.4% of all freshwater turtle species 

threatened by international trade. Regarding the status of the areas where the studies 

were carried out, slightly more than half (55%) were carried out in anthropized places, 

while the rest (45%) were carried out in protected areas (Fig. 8B). 

The discussion on conservation varied greatly in the literature evaluated. In total, 

42% of the articles make no reference to conservation issues. Almost half (48%) of the 

50 articles published in the last ten years did not mention conservation, and only 10% 

(out of 104) dedicated a specific topic to discussing species conservation (e.g., 



35 
 

35 

 

 

conservation implications, management implications or conservation considerations). In 

total, 61 papers (58%) contain mentions related to conservation that included 

recommendations from increasing the protected area (Downling et al. 2010), protecting 

populations and peripheral areas (Forero-Medina et al. 2011), protecting and recovering 

the environment of riverine populations (Chen and Lue 2008; McCoard et al. 2016), 

controlling exotic species (Kobayashi et al. 2006), decreasing tourism in occurrence 

areas (Galois et al. 2002), protecting nesting and occurrence areas (Tucker et al. 2001; 

Compton et al. 2002; Dowling et al. 2010; Freeman et al. 2018) and encouraging 

studies in partnership with managers in river systems, particularly in floodplains both 

spatially and temporally, since the reproductive success and survival of freshwater 

turtles is based on the availability of aquatic and terrestrial habitats throughout the year 

(Bodie and Semlitsch 2000). The level of detail of the mentions varies from the need to 

protect the environment to more specific and denunciatory statements, as in the case of 

the study by Zagorski et al. (2019), who, when advocating a data-driven evidence-based 

approach in studies carried out for the construction of a quarry in a place of occurrence 

of the species Emydoidea blandingii, were victims of a defamatory attack in their 

careers, where the entrepreneur and hired consultants widely disseminated, in writing, 

allegations of academic misconduct, conflict of interest and data fabrication. Concern 

about conservation in the literature is increasing, and although there is a weak positive 

relationship, we did not find a significant relationship between the proportion of articles 

that discuss these concerns and the year of publication (Spearman‘s Rs = 0.29, p = 

0.167; Fig 9). 

The telemetry studies follow the richest regions and with the highest endemism 

of freshwater turtles (Fig. 10). The vast majority of studies were carried out in the 

Nearctic region (73%), followed by the Neotropical (14%), Palaeartic (6.7%), 
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Australasian (2.8%), Afrotropic (1.92%) and Indomalayan (0.96%) regions. In total, the 

studies covered 33 freshwater ecoregions worldwide (Table 4). The ecoregions with the 

most studies were Upper Mississippi (13.46%) and Southern Hudson Bay (12.5%), both 

in the United States, both corresponding to the most studied habitat type (temperate 

coastal rivers; 44.23%; Table 4). 

 

DISCUSSION 

 

Temporal tendencies and characteristics of studies. 

  Following the world trend, which has been increasing in the number of publications 

on wildlife related to various subjects, such as ecology (Ribeiro et al. 2007; Collins et 

al. 2021) and conservation (Grelle et al. 2009), often complement each other (e.g., 

Oliveira et al. 2020), the ecology of the movement of freshwater turtles also increased 

over the 42 years evaluated here. Possibly, this is due to the reflection of the 

multiplication of journals specialized in herpetology over the years (Grelle et al. 2009), 

greater investments in research in universities, and an increase in the number of 

undergraduate and postgraduate courses in more remote places (e.g., Amazon; Martins 

et al. 2007; Scarano, 2008; Medeiros and Leta 2020), covering a more diverse audience 

and consequently increasing the number of people interested in herpetology (Campos et 

al. 2014; Rebouças, 2022), although these last two have not been the priority of some 

governments in recent years, such as in Brazil (Hipólito et al. 2022; Galvão-Castro et al. 

2022). 

Improvements in data collection and analysis techniques (Ribeiro et al. 2007; 

Doody et al. 2009; Christensen and Chow-Fraser 2014; Kingsbury and Robinson 2016; 

Cochrane et al. 2019) and the increase in knowledge about taxonomy, distribution and 
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attributes of life history, basic biology and ecological characteristics of various species 

(e.g., Deeth and Coleman 2022; Geller et al. 2022) in addition to the concern with 

biological conservation, which has increased greatly in recent years and in all segments 

of society to the detriment of anthropogenic actions (Ribeiro et al. 2007), have also 

contributed to the increase in publications, not only of freshwater turtles but also of 

several taxa. 

The predominant journals in issues of publications related to the theme are 

specialized in the herpetological field (e.g., Copeia, Journal of Herpetology, 

Herpetology review). The journal Copeia was established in 1913 and was considered 

one of the first devoted to studies of fish, amphibians and reptiles. Years later, its name 

was changed to Ichthyology & Herpetology, and it is currently internationally 

recognized as one of the most prestigious scientific journals of its kind (ASIH, 2022). It 

is noteworthy that the journal where there were more publications is specialized in 

turtles (= Chelonians): Chelonian Conservation and Biology, responsible for 18.26% of 

the publications, being also the journal with the greatest impact factor and the most 

cited journal in scienciometry studies with turtles in general (Kopperundevi 2019; 

Vences-Pérez et al. 2022). The journal Chelonian Conservation and Biology emerged in 

1994 (Karen and Scott 1994) and has been the preferred journal by researchers for 

publications related to tortoise and freshwater on various subjects, such as diversity, 

geographical distribution, natural history, ecology, reproduction, morphology and 

natural variation, population status and issues of human exploitation or conservation 

management (Karen and Scott, 1994; Stearns, 1995). Keyword analysis showed a trend 

in works involving the ecology of movement in freshwater turtles, where the four most 

cited can be considered highly effective in identifying relevant articles. 
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Studies using telemetry were predominant in the United States (57%), followed 

by Canada (14%), countries with high investment in science and technology in the 

world (Cruz 2007; Schneeganz et al. 2021). Telemetry equipment has a high cost and 

comes mainly from the United States, which exports it to other countries. The import of 

research equipment and materials is considered one of the biggest obstacles to the 

progress of science in several countries, which comes up against bureaucracy 

(Rumjanek, 2006) and the variation of the dollar, which makes telemetry equipment 

often unfeasible, being preferable to the techniques considered more popular (e.g., 

spool-and-line; Boonstra et al. 1986), and they do not need large investments. 

Another aspect that should be considered is the high diversity of freshwater 

turtles in these three countries (Neoarctic region and Neotropical region; Bour 2008), 

with a high rate of endemism, and many of them are considered threatened with 

extinction, which consequently raises interest in understanding aspects about the 

ecology of species seeking to subsidize strategic planning for conservation in a global 

effort (Turtle Conservation Fund 2007). 

Studies with unique species were responsible for 83% of our study, and 

Emydoidea blandingii was the most studied species, present in sixteen articles. In fact, 

movement studies usually evaluate a species (Holyoak et al. 2008). This high number of 

studies, very close to the second most studied species (Glyptemys insculpta; n = 15), is 

related to the geographical location of species distribution and related to work carried 

out by authors who have deepened their research efforts on the conservation of the two 

species, both considered internationally threatened (van Dijk and Rohdin, 2011; van 

Dijk and Harding 2011). 

 

Have the studies prioritized any method or analysis?. 
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In the 42 years of studies evaluated here, there has been an explicit increase in 

studies that used telemetry techniques to understand aspects related to the domestic 

reach and use of the space of freshwater turtles and the continuous dependence on 

traditional but outdated methods. Although the technique of VHF transmitters did not 

deviate from the standard found by Crane et al. (2021), in recent years, researchers have 

increasingly adopted the technique of GPS transmitters in the study of animal behavior 

and ecology (Tomkiewicz et al. 2010; Crane et al. 2021), including with freshwater 

turtles, sometimes individually or in conjunction with other techniques (Rowe et al. 

1991; Christensen and Chow-Fraser 2014; Famelli et al. 2016). Despite this, the 

effectiveness of GPS trackers for aquatic and semiaquatic species has not yet been fully 

examined (Quaglietta et al. 2012; Jeffers et al. 2016; Cochrane et al. 2019), unlike other 

groups, such as sea turtles (Schofield et al. 2007; Godley et al. 2008; Hays and Hawkes 

2018; Pheasey et al. 2020). 

Our results showed that 56% of the studies conducted in the last 10 years have 

used kernel density estimates (KDEs) and minimum convex polygons (MCPs) to 

provide greater robustness to the results. Scientists justify the use of these two 

estimators due to the possibility of comparison with the broader literature on the spatial 

ecology of species, in this case, of reptiles (Crane et al. 2021). In contrast, some authors 

ask that these two analyses require considerable control of the methods because they are 

sensitive to differences in the sampling effort (for example, the number of locations, 

duration and frequency of tracking) and therefore should not be stimulated because they 

hinder comparisons (Kraunstaber et al. 2012; Mitchell et al. 2019; Silva et al. 2020; 

Crane et al. 2021). However, more appropriate and updated methods have not been 

observed in any studies (e.g., Brownian bridge movement model - BBMM; Horne et al. 

2007; Kie et al. 2010; Silva et al. 2018, 2020; Signer and Balkenhol 2015). 
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There are several studies demonstrating the effectiveness of more recent 

analytical methods (e.g., Silva et al. 2020, 2021) and how they can be applied to radio 

telemetry data. Unlike traditional estimation methods (KDEs and MCPs), motion-based 

area estimation models (e.g., AKDEs) do not require the same prepositions as 

traditional methods, such as point independence, and can better protect against 

underestimation and overestimation (Fleming & Calabrese 2017; Silva et al. 2020; 

Crane et al. 2021). Low sample sizes do not exclude the use of newer methods such as 

AKDE and BBMMs since these methods can be effective for estimating motion 

pathways with a small set of VHF data (Silva et al. 2020, 2021; Crane et al. 2021). 

Although researchers worldwide are still developing analytical methods within 

movement and spatial ecology (Laver & Kelly 2008), the proportion of studies using 

movement-specific methods has not increased (Joo et al. 2020), demonstrating a high 

dependence on traditional methods. The home range of the species was studied in 49% 

of the works involving telemetry. In the last 20 years, following the increasingly 

improved analytical methods (Silva et al. 2020, 2021), there has been an increase in 

studies involving the domestic reach of reptiles (Crane et al. 2021) since for many 

years, the estimate of domestic reach has been useful to investigate animal-habitat 

relationships and to test the effects of sex, age, physiological requirements, social status 

or ecological restrictions in 2002. Freshwater keloids have different ranges of domestic 

range, and in some cases, they can be different between males and females (Jones 1996; 

Tucker et al. 2001; Doody et al. 2002; Fachín-Terán et al. 2006; Ponce de Leão et al. 

2019) and weight (Muller et al. 2019) and can be influenced by external factors such as 

water pollution (Luiselli et al. 2006) and seasonality (Remsberg et al. 2006; Forero-

Medina et al. 2011; Ponce de Leão et al. 2019). 
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The review covered several species, but we identified gaps to be filled in relation 

to some species that need studies with telemetry. For example, in the Neotropical 

region, there is a great diversity of freshwater turtles, including newly described species 

(Chelus orinocensis, Mesoclemmys juritiensis) and endangered species (e.g., 

Mesoclemmys vanderhagei) that have very little information regarding their movement. 

In addition, better methodological comparisons are still necessary, considering that only 

one study in Brazil was concerned with comparing the different equipment in relation to 

its effectiveness (Guilhon et al. 2011). 

 

Have studies been concerned with the conservation of species?. 

In our study, we observed that almost half of the studies that addressed aspects 

of species movement are related to species that are under some degree of threat (e.g., 

Carettochelys insculpta, Hydromedusa maximiliani, Mesoclemmys dahli, Rheodytes 

leukops, Macrochelys temminckii and Actinemys marmorata), although the diversity 

was not as representative. Turtles represent one of the most endangered vertebrate 

groups on the planet, with approximately 10% of the currently recognized species 

considered critically endangered on the IUCN Red List of Threatened Species (Turtle 

Conservation Fund 2007; IUCN 2022) and approximately 63% of the assessed species 

and approximately 42% of all known species considered threatened (IUCN 2022). 

Biological characteristics of turtles, such as delayed sexual maturity, high 

juvenile mortality and a long adult life with low natural mortality, have left turtle 

populations vulnerable to various threats potentiated by humans (Turtle Conservation 

Fund, 2007). Historically, many species of chelonians in various parts of the world have 

great food, economic and cultural importance, and their eggs, meat, viscera, fat and hull 
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have been used intensely by humans, mainly in food and traditional medicine (Van Dijk 

et al. 2000; Gibbons et al. 2000; Turtle Conservation Fund 2007; Van Dijk et al. 2014). 

More than half of the studies were carried out in anthropized areas. Despite this, 

a large number of studies have been carried out in protected areas from large parks (e.g., 

Algonquin Provincial Park and Ndumo Game Reserve; Obbard et al. 1980, 1981; 

Paterson et al. 2012, 2014; Price et al. 2022) to smaller areas (e.g., Mamirauá 

Sustainable Development Reserve, Adolpho Ducke Forest Reserve, The Trombetas 

Biological Reserve and Carlos Botelho State Park; Fachín-Terán et al. 2006; Guilhon et 

al. 2011; Famelli et al. 2016). Evidently, some species were studied only in protected 

areas (e.g., Podocnemis sextuberculata, Podocnemis unifilis, Macrochelys temmninckii 

and Platysternon megacephalum), possibly due to the greater ease in obtaining help 

with logistics and public‒private partnership, which may promote an increase in the 

effectiveness of protection, handling and research with these animals (Marcovaldi et al. 

2005). 

In the present study, we evidenced geographic gaps in studies using telemetry 

worldwide. Although we have observed that telemetry studies follow the most diverse 

regions and with greater endemism of freshwater turtles, there is still much to know, 

especially in the less studied ecoregions. Freshwater ecoregions consist of a large area 

that encompasses one or more freshwater systems with a distinct set of natural 

freshwater communities and species and are considered priorities for biodiversity 

conservation (FEOW 2023) and sea turtle studies. Freshwater should be stimulated in 

these places, seeking to understand how the different anthropic impacts may affect the 

movement of species in these places, especially those that are outside the currently 

recognized global biodiversity conservation strategies. 
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Although telemetry has been used by a relatively small number of studies of 

freshwater turtles concentrated in a few places in the world, the studies still provide a 

wealth of information on the ecology of movement of some of them, particularly on the 

spatial distribution and movement within the study sites. Considering that few species 

have been studied in comparison with the global richness of these animals, it is evident 

that much remains to be known about the movement of dozens of species of freshwater 

turtles, especially in regions where the greatest diversity of these animals is found, such 

as the Neoarctic region, the Neotropical region and the Oriental region, in turtle 

hotspots and priority areas for the conservation of freshwater turtles. 
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Fig. 1. — Flowchart with article selection processes and number of studies for each step 

of the review based on PRISMA criteria (Moher et al., 2020). 
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Fig. 2. — (A) Total number of movement ecology articles published per year. (B) Total 

number of movement ecology citations per year. 

 

 
 

Fig. 3. — Cloud of keywords most used by authors in scientific articles, involving 

ecology of the movement of freshwater turtles. 
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Fig 4. —  Co–authorship network where the importance of each collaborator in the 

network is graphically presented (A) and co–authorship network presented the 

importance of each institution in the network (B). The font size of the network 

corresponding to the aut with the highest number of collaborations. 
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Fig. 5. —  Number of studies that addressed telemetry in freshwater turtle movement 

ecology studies by country. 

 

 

 

Fig. 6. — Taxonomic representativeness of articles. Comparison of extant turtle species 

number and (A) the number of studies and (B) studied species. 
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Fig. 7. —  Methods used in studies that used telemetry to answer questions about the 

ecology of movement in freshwater turtles. 

 

 
Fig. 8. —  Methods of analysis used in the studies surveyed. Legend: AKDE = 

Adaptative Kernel Density; MCP = Minimum Convex Polygon; LHR = Linear Home 

Range. 
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Fig. 9. — Types of studies conducted using telemetry in the ecology of the movement of 

freshwater turtles. 

 
Fig. 10. —  Species threat status with telemetry studies conducted worldwide 

considering IUCN and CITES. 
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Fig. 11. —  Status of areas where studies using telemetry were performed. 

 
Fig. 12. —  Proportion of works that mention conservation. There was no significant 

relationship between the year of publication and whether conservation was discussed in 

articles. 
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Fig. 12. —  Geographical distribution of articles following the world's freshwater 

ecoregions (Abell et al. 2008; FEOW, 2022). (I) General map of the distribution of 

articles published in all freshwater ecoregions. The smaller maps, available at 

<https://www.feow.org/global–maps/biodiversity>, indicate (A) the percentage of 
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endemic freshwater turtle species; (B) freshwater turtle species per ecoregion area; (C) 

the number of endemic freshwater turtle species; and (D) freshwater turtle species 

richness. (II) Highlight for the two continents with the highest number of publications 

and their respective. 

 

Table 1.Bibliographic base construction criteria. 

Criterion Definition 

Database 
Scopus, Web of Science and Google Scholar and 

private collection 

Document type Scientific articles 

Keywords 
((turtle OR chelonian) AND (freshwater* OR river*) 

AND (telemetry OR radiotelemetry OR satellite)) 

Study areas No restrictions 

Publication period July 2022 

Research institution No restrictions 

Language of publication English 
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Table 2. List of the most relevant journals in terms of the number of scientific articles 

published. 

Rankin

g 
Journals 

N
o
 

Publication

s 

% 
Impact 

factor 

1° Chelonian Conservation and Biology 19 18.26 1.209 

2° Journal of Herpetology 12 11.53 1.43 

3° Copeia 11 10.57 1.857 

4° Herpetological Review 8 7.69 – 

5° 
Herpetological Conservation and 

Biology 
6 5.76 0.959 
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Table 3. Species cited in the 104 articles surveyed in the present work. 1 

Taxon Common name Species citations
a
 Author 

Testudines     

Carettochelyidae     

Carettochelys insculpta Pig–nosed Turtle 1 Doody et al (2002) 

Chelidae    

Chelodina expansa 
Giant Snake–necked 

Turtle 
1 Bower et al. (2012) 

Elseya irwini Irwin's Turtle 1 Freeman et al., (2018) 

Hydromedusa maximiliani 
Maximilian‘s Snake–

headed Turtle 
1 Forero–Medina et al. (2011); Famelli et al. (2016) 

Mesoclemmys dahli Dahl‘s Toadhead Turtle 1 Forero–Medina et al. (2011) 

Phrynops geoffroanus 
Geoffroy‘s Toadhead 

Turtle 
1 Muller et al., (2019) 

Rheodytes leukops Fitzroy River Turtle 1 Tucker et al (2001) 

Chelydridae    

Chelydra serpentina Common Snapping Turtle 8 

Obbard et al (1980); Obbard and Brooks (1981); Saba and 

Spotila (2003); Kobayashi et al (2006); Paisley et al. 

(2008); Steen et al. (2010); Strain et al. (2012); 

Anthonysamy et al. (2014); Hughes et al., (2019) 

Macrochelys temminckii Alligator Snapping Turtle 2  Howey and Dinkelacker (2008); Moore et al. (2014) 

Emydidae     

Actinemys marmorata Western Pond Turtle 2 Bondi and Marks (2013); Zaragoza et al. (2015) 

Chrysemys picta Eastern Painted Turtle 6 

Saba and Spotila (2003); Bowne and White (2004); 

Bowne et al (2006); Tran et al. (2007); Bowne (2008); 

Anthonysamy et al. (2014) 

Clemmys guttata Spotted Turtle 7 
Joyal et al (2001); Compton et al (2002); Kaye et al 

(2005); Anthonysamy et al. (2014); Buchanan et al., 



76 
 

76 

 

 

Taxon Common name Species citations
a
 Author 

(2017); Oxenrider et al. (2018); Odell et al., (2021); Hjort 

Toms et al. (2022) 

Emydoidea blandingii Blanding's Turtle 16 

Rowe and Moli (1991); Piepgras and Lang (2000); Joyal 

et al (2001); Innes et al. (2008); Beaudry et al. (2010); 

Dowling et al. (2010); Millar and Blouin–Demers (2011); 

Fortin and Dubois (2012); Paterson et al. (2012); 

Anthonysamy et al. (201); Anthonysamy et al. (2014); 

Christensen and Chow–Fraser (2014); Paterson et al. 

(2014); Hasler et al. (2015); Zagorski et al. (2019); 

Hamernick et al. (2019) 

Deirochelys reticularia Eastern Chicken Turtle 1 Buhlmann (1995) 

Emys orbicularis European Pond Turtle 2 Cadi et al (2004); Najbar et al. (2015) 

Glyptemys insculpta Wood Turtle 15 

Brewster and Brewster (1991); Remsberg et al. (2006); 

Greaves and Litzgus (2007); Paterson et al. (2012); Parren 

(2013); Paterson et al. (2014); McCoard et al. (2016); 

McCoard et al., (2018); Thompson et al., (2018); 

Cochrane et al., (2019); Lapin et al. (2019); Hagani et al. 

(2021); Otten et al. (2021) 

Glyptemys muhlenbergii Bog Turtle 2 Morrow et al. (2001); Somers et al. (2007) 

Graptemys barbouri Barbour's Map Turtle 1 Sterrett et al. (2015) 

Graptemys flavimaculata 
Yellow–blotched Map 

Turtle 
1 Jones (1996) 

Graptemys geographica Common Map Turtle 4 
Tran et al. (2007); Ouellette and Cardille (2011); 

Freedberg (2020); Nagle and Russell (2020) 

Graptemys 

pseudogeographica 
False Map Turtle 1 Bodie and Semlistch (1999) 

Malaclemys terrapin 
Northern Diamondback 

Terrapin 
1 Lamont et al (2021) 
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Taxon Common name Species citations
a
 Author 

Pseudemys rubiventris 
Northern Red–bellied 

Turtle 
1 Saba and Spotila (2003) 

Pseudemys nelsoni Florida Redbelly Turtle 1 Kramer (1995) 

Pseudemys floridana Florida Cooter 1 Burke and Gibbons (1995) 

Trachemys scripta Yellowbelly Slider 6 

Burke and Gibbons (1995); Bodie and Semlistch (1999); 

Saba and Spotila (2003); Tran et al. (2007); Mali et al., 

(2016) 

Geoemydidae    

Mauremys rivulata Western Caspian Turtle 1 Chelazzi et al. (2007) 

Mauremys sinensis 
Chinese Striped–necked 

Turtle 
1 Chen and Lue (2008) 

Kinosternidae    

Kinosternon baurii Striped Mud Turtle 1 Stemle et al., (2019) 

Kinosternon integrum Mexican Mud Turtle 2 Pérez–Pérez et al., (2017); Aparicio et al., (2018) 

Kinosternon leucostomum White–lipped Mud Turtle 1 Morales–Verdeja and Vogt (1997) 

Kinosternon sonoriense Sonoran Mud Turtle 1 Ligon and Stone (2003) 

Kinosternon subrubrum Eastern Mud Turtle 3 
Burke and Gibbons (1995); Steen et al. (2007); Cordero et 

al. (2012) 

Sternotherus carinatus Razorback Musk Turtle 1 Kavanagh and Kwiatkowski (2016) 

Sternotherus odoratus Stinkpot Turtle 3 
Rowe et al. (2009); Anthonysamy et al. (2014); Laverty et 

al., (2016) 

Sternotherus peltifer Stripeneck Musk Turtle 1 Ennen and Scott (2008) 

Sternotherus minor Loggerhead Musk Turtle 3 
Ennen and Scott (2008); Ennen and Scott (2013); 

Munscher et al., (2021) 

Pelomedusidae     

Pelomedusa galeata 
South African Helmeted 

Terrapin 
1 Price et al. (2022) 
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Taxon Common name Species citations
a
 Author 

Pelusios castaneus African Mud Turtle 1 Luiselli et al (2006) 

Pelusios niger 
West African Black 

Forest Turtle 
1 Luiselli et al (2006) 

Pelusios sinuatus Serrated Turtle 1 Price et al. (2022) 

Platysternidae     

Platysternon 

megacephalum 
Big–headed Turtle 1 Sun et al. (2014) 

Podocnemididae     

Peltocephalus 

dumerilianus 

Big–headed Amazon 

River Turtle 
1 Guilhon et al. (2011) 

Podocnemis expansa 
South American River 

Turtle 
4 

Guilhon et al. (2011); Ferrara et al. (2013); Carneiro and 

Pezzuti (2015); Bernardes et al. (2017) 

Podocnemis lewyana 
Rio Magdalena River 

Turtle 
1 Alzate–Estrada et al., (2019) 

Podocnemis 

sextuberculata 

Six–tubercled Amazon 

River Turtle 
2 Fachín–Terán et al (2006); Guilhon et al. (2011) 

Podocnemis unifilis 
Yellow–spotted Amazon 

River Turtle 
3 

Guilhon et al. (2011); Naveda–Rodríguez et al. (2018); 

De Leão et al., (2019) 

Trionychidae     

Apalone mutica Smooth Softshelled Turtle 1 Ross et al. (2019) 

Apalone spinifera Eastern Spiny Softshel 4 
Galois et al (2002); Tornabene et al., (2017); Schneider et 

al., (2019); Tornabene et al., (2019) 

Rafetus euphraticus 
Euphrates Soft–shelled 

Turtle 
1 Ghaffari et al. (2014) 

a
When the same article studied multiple species, the same article is included multiple times in the species study counts presented.2 
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Table 4. Number of articles published in each of the world's freshwater ecoregions (FEOW, 2022). 

State ID Studies number Realm Major Habitat Type Ecorregion 

USA 

116 9 Nearctic Large lakes Laurentian Great Lakes 

117 1 Neartic Temperate coastal rivers St.Lawrence 

118 1 Neartic Temperate coastal rivers 
Northeast US & Southeast 

Canada Atlantic Drainages 

125 3 Neartic Temperate coastal rivers Sacramento – San Joaquin 

132 1 Neartic Temperate upland rivers Upper Rio Grande – Bravo 

140 2 Neartic Temperate coastal rivers East Texas Gulf 

144 1 Neartic Temperate upland rivers US Southern Plains 

145 2 Neartic Temperate upland rivers Ouachita Highlands 

148 14 Neartic 
Temperate floodplain 

rivers and wetlands 
Upper Mississippi 

149 2 Neartic 
Temperate floodplain 

rivers and wetlands 
Lower Mississippi 

150 7 Neartic Temperate upland rivers Teays – Old Ohio 

156 3 Neartic 
Tropical and subtropical 

coastal rivers 
Florida Peninsula 

157 8 Neartic Temperate coastal rivers Appalachian Piedmont 

158 6 Neartic Temperate coastal rivers Chesapeake Bay 

Canada 

110 13 Neartic Temperate coastal rivers Southern Hudson Bay 

114 3 Neartic Temperate coastal rivers 
Gulf of St.Lawrence Coastal 

Drainages 

Australia 807 4 Australasia Temperate coastal rivers Eastern Coastal Australia 

Brazil 

316 3 Neotropic 

Tropical and subtropical 

floodplain rivers and 

wetland complexes 

Amazonas Lowlands 

343 1 Neotropic 

Tropical and subtropical 

floodplain rivers and 

wetland complexes 

Paraguay 

344 1 Neotropic 
Tropical and subtropical 

upland rivers 
Upper Parana 

323 4 Neotropic large river deltas Amazonas Estuary & Coastal 

https://www.feow.org/ecoregions/details/116
https://www.feow.org/ecoregions/details/117
https://www.feow.org/ecoregions/details/118
https://www.feow.org/ecoregions/details/118
https://www.feow.org/ecoregions/details/125
https://www.feow.org/ecoregions/details/132
https://www.feow.org/ecoregions/details/140
https://www.feow.org/ecoregions/details/144
https://www.feow.org/ecoregions/details/145
https://www.feow.org/ecoregions/details/148
https://www.feow.org/ecoregions/details/149
https://www.feow.org/ecoregions/details/150
https://www.feow.org/ecoregions/details/156
https://www.feow.org/ecoregions/details/157
https://www.feow.org/ecoregions/details/158
https://www.feow.org/ecoregions/details/110
https://www.feow.org/ecoregions/details/114
https://www.feow.org/ecoregions/details/114
https://www.feow.org/ecoregions/details/807
https://www.feow.org/ecoregions/details/316
https://www.feow.org/ecoregions/details/343
https://www.feow.org/ecoregions/details/344
https://www.feow.org/ecoregions/details/323
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State ID Studies number Realm Major Habitat Type Ecorregion 

Drainages 

Mexico 

169 2 Neotropic 
Tropical and subtropical 

coastal rivers 
Rio Balsas 

171 1 Neotropic 
Tropical and subtropical 

coastal rivers 
Papaloapan 

Japan 642 2 Paleartic Temperate coastal rivers Honshu – Shikoku – Kyushu 

Taiwan 757 1 Indo–Malay 
Tropical and subtropical 

coastal rivers 
Western Taiwan 

Iran 701 1 Paleartic 
Xeric freshwaters and 

endorheic (closed) basins 
Baluchistan 

Poland 404 1 Paleartic 
Temperate floodplain 

rivers and wetlands 
Central & Western Europe 

Spain 403 1 Paleartic Temperate coastal rivers Cantabric Coast – Languedoc 

Nigeria 506 1 Afrotropic large river deltas Niger Delta 

South Africa 578 1 Afrotropic Temperate coastal rivers Cape Fold 

Colombia 302 2 Neotropic 
Tropical and subtropical 

upland rivers 
Magdalena – Sinu 

Equador 301 1 Neotropic 
Tropical and subtropical 

coastal rivers 

North Andean Pacific Slopes 

– Rio Atrato 

France 403 1 Palearctic Temperate coastal rivers Cantabric Coast – Languedoc 

Greece 421 1 Palearctic Temperate coastal rivers Ionian Drainages 

https://www.feow.org/ecoregions/details/323
https://www.feow.org/ecoregions/details/169
https://www.feow.org/ecoregions/details/171
https://www.feow.org/ecoregions/details/642
https://www.feow.org/ecoregions/details/757
https://www.feow.org/ecoregions/details/701
https://www.feow.org/ecoregions/details/404
https://www.feow.org/ecoregions/details/403
https://www.feow.org/ecoregions/details/506
https://www.feow.org/ecoregions/details/578
https://www.feow.org/ecoregions/details/302
https://www.feow.org/ecoregions/details/301
https://www.feow.org/ecoregions/details/301
https://www.feow.org/ecoregions/details/403
https://www.feow.org/ecoregions/details/421
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RESUMO 

Compreender como os regimes hidrológicos influenciam o comportamento espacial de quelônios de 

água doce é fundamental para a conservação em sistemas fluviais cada vez mais regulados. Neste 

estudo, investigamos os padrões sazonais de movimentação, orientação direcional e uso do espaço da 

tartaruga tracajá (Podocnemis unifilis) no médio rio Xingu, Amazônia brasileira, sob influência do 

complexo hidrelétrico de Belo Monte. Utilizamos dados de telemetria via satélite de 32 indivíduos 

monitorados entre 2017 e 2022, para analisar métricas de deslocamento, orientação azimutal e uso 

sazonal de habitat ao longo de três setores longitudinais do rio (Montante, Intermediário e Jusante). 

Foram registradas 2.264 localizações válidas ao longo de 1.637 dias de rastreamento. Embora as fêmeas 

tenham percorrido distâncias totais maiores em comparação aos machos, não foram observadas 

diferenças estatisticamente significativas entre os sexos, setores ou estações hidrológicas nas métricas de 

deslocamento total ou linear. As análises direcionais também não indicaram orientação significativa 

entre sexos ou estações. Notavelmente, os testes de V não evidenciaram alinhamento direcional em 

relação às praias de desova. Apesar disso, o comportamento espacial apresentou variação sazonal: 

durante o período de águas baixas, os indivíduos demonstraram movimentos localizados e forte 

fidelidade a algumas praias. Em contrapartida, o período de águas altas foi associado à expansão do uso 

do espaço e à ocupação de habitats temporariamente acessíveis. Essa expansão foi mais evidente nos 

setores Intermediário e Montante, sugerindo que a conectividade hidrológica é um fator chave na 

dispersão espacial. Nossos resultados mostram que P. unifilis apresenta plasticidade comportamental no 

uso do espaço, mas ausência de movimentos direcionais consistentes. Esses padrões reforçam a 

importância de habitats locais heterogêneos e a necessidade de preservar a conectividade sazonal em 

ambientes fluviais impactados por empreendimentos hidrelétricos. 

Palavras-chave: Quelônios amazônicos, Influência hidrológica, Ecologia aquática, Estatísticas 

circulares, Métricas de movimentação, Análise direcional. 
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ABSTRACT 

 

Understanding how hydrological regimes influence the spatial behavior of freshwater turtles is essential 

for conservation in increasingly regulated river systems. In this study, we have investigated seasonal 

patterns of movement, directional orientation, and space use of the yellow-spotted river turtle 

(Podocnemis unifilis) in the middle Xingu River, Brazilian Amazon, under the influence of the Belo 

Monte hydroelectric complex. Using satellite telemetry data from 32 individuals monitored between 

2017 and 2022, we have analyzed displacement metrics, azimuthal orientation, and seasonal habitat use 

across three longitudinal sectors of the river (Upstream, Midstream, and Downstream). A total of 2,264 

valid locations were recorded over 1,637 tracking days. Although females traveled greater total 

distances  compared to males, no statistically significant differences were found between sexes, river 

sectors, or hydrological seasons in either total or linear movement metrics. Directional analyses also 

revealed no significant orientation by sex or season. Notably, V-tests showed no directional alignment 

toward nesting beaches. Despite this, spatial behavior varied seasonally: during the low-water period, 

individuals exhibited localized movements and strong fidelity to specific beaches. In contrast, the high-

water period was associated with an expansion in space use and the occupation of temporarily accessible 

habitats. This expansion was most pronounced in the Midstream and Upstream sectors, suggesting that 

hydrological connectivity is a key driver of spatial dispersal. Our results show that P. unifilis exhibits 

behavioral plasticity in space use but lacks consistent directional movement. These patterns underscore 

the importance of maintaining heterogeneous local habitats and preserving seasonal connectivity in 

riverine environments affected by hydropower development. 

Keywords: Amazonian Chelonians, Hydrological Influence, Aquatic Ecology, Circular Statistics, 

Movement Metrics, Directional Analysis. 
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INTRODUCTION 

 

The Amazon Basin, encompassing an extensive area of approximately 5 million km², is 

recognized as the largest tropical rainforest in the world and harbors an enormous diversity of flora and 

fauna (Perkison, 1968; Haugaasen and Peres, 2006; Hansen et al., 2013; Ter Steege et al., 2013; Sheil, 

2014). The Amazon is fundamental to global climate balance and the maintenance of ecological 

processes, acting as a prominent carbon sink and affecting regional and global precipitation dynamics 

(Davidson et al., 2012; Malhi et al., 2008; Matricardi et al., 2020; Lapola et al., 2023). Furthermore, 

this biome plays an important role in biodiversity conservation, accommodating a multitude of endemic 

species and providing essential ecosystem services (Goulding et al., 2003; Lewinsohn et al., 2005; 

Fearnside, 2005). 

However, population growth and the intensification of economic activities have resulted in 

environmental degradation in the Amazon, including intensive hunting and wildlife capture for trade, 

leading to worrying population declines of fauna species (Smith, 1979; Fearnside, 1990; Betts et al., 

2008; Lapola et al., 2023). Agricultural expansion, mining, and the construction of roads and 

hydroelectric dams have also contributed to these declines, causing ecosystem fragmentation and 

reducing forest cover, directly affecting biodiversity (Fearnside, 1990, 2005; Alho, 2011; Laurance et 

al., 2014). 

Among the most concerning species, Podocnemis unifilis (yellow-spotted river turtle) has 

suffered drastic population reductions (Tortoise & Freshwater Turtle Specialist Group, 1996; Santos-

Arraes et al., 2016; Flores-Ponce et al., 2022) due to overexploitation (Bates, 1863; Smith, 1979; 

Pritchard and Trebbau, 1984; Pantoja-Lima et al., 2014; Rebêlo and Pezzuti, 2000; Moll & Moll, 2004; 

Fachín-Terán, 2005; Vogt, 2008; Ataídes et al., 2010; Pezzuti et al., 2010; Casal et al., 2013), habitat 

loss (Tortoise & Freshwater Turtle Specialist Group, 1996), illegal trade (Kemenes and Pezzuti, 2007), 

climate change (Eisemberg et al., 2016; Butler, 2019; Forero-Medina et al., 2021), and exposure to 

heavy metals (e.g., mercury and pesticides; Pignati et al., 2018 a,b; Borges et al., 2022). 
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The species is classified as ―Vulnerable‖ by the International Union for Conservation of Nature - 

IUCN (IUCN, 2022) and as ―Near Threatened‖ on the national list of threatened species (MMA, 2022). 

It is also included in Appendix II of CITES and is considered endangered by the U.S. Fish and Wildlife 

Service (USFWS) (Vogt, 2008). 

This species is considered threatened also due to its longevity and late sexual maturation 

(Pritchard, 1979), which make individuals particularly susceptible to exploitation throughout their lives 

(Norris and Michalski, 2013). These characteristics significantly increase the risk of capture before they 

reach reproductive maturity, compromising the long-term viability of populations (Smith, 1979; Moll 

and Moll, 2004). Moreover, their dependence on suitable beaches for nesting restricts reproduction to 

scarce and often exposed habitats, increasing their vulnerability to predation by both animals and 

humans (Júnior et al., 2009; Pignati et al., 2013; Arraes et al., 2014; Guimarães et al., 2023). The 

exposure of these reproductive sites also makes them susceptible to extreme climatic events, which can 

lead to nest destruction (Ferrara et al., 2014; Fagundes et al., 2018; Guimarães et al., 2023). 

Additionally, temperature plays a crucial role in determining the sex ratio of hatchlings, a process that 

can be altered by environmental changes, resulting in population imbalances (Alho and Pádua, 1982; 

Ferreira-Júnior and Castro, 2006; Lubiana and Ferreira Júnior, 2009; Bonach et al., 2011; Alves Júnior 

et al., 2012). 

P. unifilis holds significant ecological importance, being responsible for seed dispersal and 

maintenance of water quality (Moll and Jansen, 1995; Vogt, 2008), and also has great economic value 

for some regions of the Amazon (Smith, 1979; Alves and Santana, 2008; Fachín-Terán et al., 2004; 

Pezzuti et al., 2010; Santos and Fiori, 2020). Although this species has been protected in Brazil since 

1979 (Cantarelli et al., 2014), its protection has been less effective in certain areas (Jaffé et al., 2008; 

Cantarelli et al., 2014). The lack of adequate enforcement and the difficulty in controlling illegal 

activities in vast areas of the Amazon, specifically in their reproductive environments, make this species 

highly vulnerable (Kemenes and Pezzuti, 2007; Jaffé et al., 2008; Cantarelli et al., 2014; Forero-Medina 

et al., 2021). Furthermore, changes in hydrological regimes along rivers, due to the construction of 

hydroelectric dams and climate change, are known to directly impact nesting sites and migration routes 
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of river turtles (Alho and Pádua, 1982; Alcântara et al., 2013; Eisemberg et al., 2016; Simoncini et al., 

2019; Ataídes et al., 2021). 

Both adult individuals and eggs are widely consumed by riverside populations in the Amazon, 

which further aggravates the population decline of these species (Alcântara et al., 2013; Ataídes et al., 

2010; Pantoja-Lima et al., 2012; Norris and Michalski, 2013; Cajaiba et al., 2015). This practice, deeply 

rooted in cultural traditions, represents an important source of protein for local communities, but at high 

and unmanaged levels, it significantly contributes to the overexploitation of populations (Miorando et 

al., 2013; Arraes et al., 2016). The continuous removal of reproductive females and egg collection 

directly decrease the reproductive success and recruitment rate of the species, impacting their recovery 

capacity over time (Caputo et al., 2005; Arraes et al., 2016). 

The increasing demand for consumption and trade of these turtles, not only in riverside 

communities but also in urban markets, has increased the pressure on wild populations (Fachín-Terán et 

al., 2000; Camillo et al., 2012; Lopes et al., 2012). Therefore, intensive capture in nesting areas and the 

illegal trade of eggs and meat intensify the risk of local extinction in various regions, especially when 

coupled with habitat loss and natural predation (Vogt, 2008; Ferrara et al., 2014; Pantoja-Lima et al., 

2014), and have resulted in an evolutionary trap for Amazonian chelonian populations (Hale et al., 

2016; Quintana et al., 2019; Robertson & Blumstein, 2019). 

P. unifilis has distribution areas that reflect its need for specific resources for feeding and 

reproduction (Naveda-Rodríguez et al., 2018; Cueva et al., 2018; Ponce de Leão et al., 2019). The home 

range of this species can vary significantly throughout the year, depending on factors such as food 

availability, hydrological conditions, and reproductive needs (Moll and Moll, 2004; Fagundes et al., 

2018; Ponce de Leão et al., 2019). The nesting period of P. unifilis in the Xingu River generally occurs 

in August and September, with an incubation period of approximately 65 days, which may vary in 

response to environmental conditions (Vogt, 2008; Ferreira-Júnior and Castro, 2010; Lacava & Balestra, 

2019).  

Females of this species tend to select higher nesting sites to minimize the risk of nest flooding 

during the rainy season (Vanzolini, 2003; Ferreira-Júnior and Castro, 2010; Pignati et al., 2013; Ferrara 
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et al., 2014). However, the species demonstrates considerable behavioral plasticity, apparently not 

having strict requirements regarding nesting site selection, with nesting already recorded in 

anthropogenic areas, indicating its ability to adapt to different types of environments (Santos, 2013). 

Few studies have sought to evaluate the movement patterns of Podocnemididae species, relying 

mainly on VHF radio telemetry techniques (Book et al., 1998; Guilhon et al., 2011; Naveda-Rodríguez 

et al., 2018; Ponce de Leão et al., 2019) and, in some cases, on the use of GPS (Guilhon et al., 2011; 

Souza, 2012; Carneiro and Pezzuti, 2015). Most of these studies have been conducted on the giant South 

American river turtle (Podocnemis expansa). More recently, the use of technologies such as satellite 

tracking has been increasingly employed to understand the movement patterns and habitat use of 

species, particularly turtles (Godley et al., 2008; Schofield et al., 2010; Christensen and Chow-Fraser, 

2014; Cochrane et al., 2019; Ribeiro et al., 2024). Despite technological advancements, little is still 

known about the movement patterns of Podocnemis unifilis. 

What is known is that the movement of P. unifilis is intrinsically linked to the hydrological 

cycles of the Amazon, being shaped by different phases that directly influence the availability of areas 

for feeding, resting, and reproduction (Ponce de Leão et al., 2019; Fagundes et al., 2021). During the 

reproductive period, females generally move over greater distances in search of suitable beaches for 

nesting, while males tend to remain in more restricted foraging areas (Moll and Moll, 2004; Ferrara et 

al., 2014). Seasonal variation in water levels also directly impacts turtle movements, with Flooding 

season expanding available habitats and facilitating greater dispersion, while the Dry season restricts 

their movements to remaining water bodies, limiting their activities (Bodie, 2001; Fagundes et al., 

2021). 

However, to date, there are no specific studies focused on evaluating the movement patterns 

of Podocnemis unifilis in the Xingu River. In light of this gap, the present study aims to fill this need by 

investigating how the movement patterns of P. unifilis and the hydrological cycles of the Xingu river 

shape the displacements and behavior of this species. 

The specific objectives of this study were to: i) assess the directional orientation behavior of 

Podocnemis unifilis; ii) investigate the seasonal movement patterns of the species in the middle Xingu 
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River by comparing spatial metrics such as total distance traveled, linear displacement, and average 

daily movement between low-water and high-water periods; iii) identify, map, and characterize areas of 

highest use intensity; and iv) compare space use among the different river sectors (Upstream, 

Midstream, and Downstream). 

 

MATERIALS AND METHODS: 

Target species – Podocnemis unifilis Troschel, 1848, commonly known as "tracajá," is a medium-sized 

species with a carapace length of up to 46.5 cm and a weight of 11 kg (Vogt, 2008). This species occurs 

in South America, where it is registered in Colombia, Venezuela, Guyana, French Guiana, Suriname, 

Brazil, Peru, Ecuador, and Bolivia (Pritchard & Trebbau, 1984; Dixon & Soini, 1986; Peñaloza et al., 

2013; Uetz et al., 2024). In Brazil, it is found in the Amazon and Cerrado biomes, and its distribution 

covers the Amazon, Tocantins/Araguaia, Atlantic Northeast and Paraguay river basins (Vogt, 2008). 

Due to the historical exploitation and threats faced by species of the Podocnemididae family in 

the Amazon, the Brazilian government established the Amazon Turtle Project (PQA) in 1979 (IBAMA, 

1989; Cantarelli et al., 2014; Fagundes et al., 2021; Lacava et al., 2024). This program aims to protect 

the nesting areas of these and other species across several states. In this context, the need to develop a 

comprehensive conservation plan incorporating various strategies was identified, with a particular focus 

on preserving nesting areas (Cantarelli et al., 2014; MMA, 2019). In 2015, the Federal Government 

established the National Action Plan for the Conservation of Amazonian Turtles (PAN Quelônios 

Amazônicos), targeting the same species covered by the PQA (MMA, 2019; Fagundes et al., 2021). 

Currently, PAN Quelônios Amazônicos serves as the main strategic instrument for the conservation of 

Amazonian turtles, particularly P. unifilis in Brazil. 

 

Study area – The study was conducted along the Xingu River (Pará, Brazil), covering three sections 

defined by their position relative to the Belo Monte Hydroelectric Complex: upstream (above the 

Pimental dam, near Altamira), midstream (between the Pimental dam and the main powerhouse), and 

downstream (below the powerhouse, including Volta Grande and the REVIS reserve) (Figure 1). The 
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region has a humid tropical climate with a distinct hydrological seasonality—rainy season from 

December to April and dry season from June to November (ANA, 2013; IBGE, 2020). 

The Xingu River, a major clearwater Amazonian tributary, spans ~2,500 km and drains 510,000 

km² across Amazon–Cerrado ecotones (Sioli, 1985; Goulding et al., 2003). Its geomorphological 

complexity—floodplains, rapids, anastomosing channels, and várzea—supports diverse aquatic habitats, 

particularly in Volta Grande (Sawakuchi et al., 2015; Kalacska et al., 2019). Recognized for its 

ecological importance, the basin is targeted by conservation policies such as the National Action Plan 

for Endemic and Threatened Species of the Lower and Middle Xingu (ICMBio, 2012). 

 

Figure 1 - Map of the Xingu River stretch in Pará, Brazil, indicating the study area of 32 individuals 

monitored between 2017 and 2022.  
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Data Collection. – Transmitters. Individuals were captured using various methods (Balestra et al., 

2016) during multiple field campaigns along the Xingu River, as part of the Turtle Conservation and 

Management Program of the Belo Monte Hydroelectric Power Plant. Each turtle was fitted with a 

satellite transmitter attached to the posterior portion of the carapace using non-toxic epoxy resin. The 

transmitters (models Kiwisat K2G 158A, K2G 273C, and K2G 173A) were programmed to record 

geographic positions at regular intervals of 2 to 3 hours, storing date, time, and coordinates 

(latitude/longitude, WGS84 datum). Locations were transmitted via satellite uplink (Argos system) 

whenever the animal surfaced, allowing for remote tracking without the need for frequent recapture. 

 

Data Analysis – Data Filtering. A preliminary evaluation of the telemetry dataset was conducted to 

ensure data quality. This involved the manual exclusion of anomalous or biologically implausible 

locations (i.e. urban areas or roads) as well as all Class Z records, which are known for low positional 

accuracy (Vincent et al., 2002; Costa et al., 2010; Patterson et al., 2010; ARGOS, 2016; Hooten et al., 

2017). Data segments with gaps longer than 3 to 5 days were split into independent records, following 

Douglas et al. (2012). The Douglas-Argos Filter (DAF) was applied, using spatial criteria such as 

distance and turning angle thresholds, combined with a conservative speed limit of 0.5 m/s based on 

related freshwater turtle species (Freitas et al., 2008; Shimada et al., 2012). In addition, the Local 

Outlier Factor (LOF) method was used to identify and exclude statistical outliers (Breunig et al., 2000; 

Aggarwal, 2015). 

 

Sampling Effort and Bias Control - To ensure that movement patterns were not influenced by 

variation in tracking effort, a Spearman correlation was performed between the number of monitored 

days and the number of valid locations per individual (Corder & Foreman, 2014).  

 

Directional Analysis and Orientation Structure - The direction of movements was analyzed through 

the calculation of azimuths between successive locations, representing the direction of each movement 
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performed by an individual. For each set of azimuths, the Rayleigh test was applied to assess whether 

the angular distribution was random or concentrated in a predominant direction (Batschelet, 1981; 

Pewsey et al., 2013; Landler et al., 2021). Directional patterns were graphically visualized using rose 

diagrams (Fisher, 1995; Afonso et al., 2020; Ferreira et al., 2022). 

Additionally, descriptive circular statistics such as mean direction, circular standard deviation, 

and the concentration parameter κ were calculated to describe the consistency of orientation within each 

group of individuals (Otieno & Anderson-Cook, 2006; Pewsey et al., 2013). 

 

Statistical Modeling of Movement Metrics - The movement metrics evaluated included total distance 

traveled (Total_km), linear range (Linear_km), and mean daily distance (Daily_km). These variables 

were analyzed using generalized linear models (GLMs) with a Gamma distribution and a log link 

function, appropriate for the asymmetric and positive distribution of the data (McCrimmon, 2018). 

 

Hotspots and spatial fidelity – In order to identify areas with greater intensity of space use, Kernel 

Density Estimation (KDE) was applied based on the telemetry-derived location data (Silverman, 1986; 

Borger et al., 2006; Kie et al., 2010). The resulting density maps allowed the identification of regions 

with higher clustering of locations, interpreted as core areas associated with critical behaviors such as 

thermoregulation, foraging, or nesting (Cagnacci et al., 2010) 

 

RESULTS 

Locations and Temporal Distribution. - After applying the filtering criteria described in the 

methodology, a total of 2,264 valid locations for Podocnemis unifilis were obtained over 1,637 days of 

monitoring. These locations were distributed among 32 individuals tracked throughout the study. The 

number of locations per individual ranged from 11 to 510, with an average of 71.31 ± 94.77 locations 

per individual (Table 1). 

The individuals with the highest number of records and monitoring duration were PTT 183643, 

with 510 locations over 497 days, and PTT 163009, with 254 locations over 284 days. In contrast, 
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individuals PTT 183664, PTT 183655, and PTT 183660 presented the lowest tracking intensities: the 

first had 11 locations over 60 days, the second 13 locations over 39 days, and the third 13 locations over 

333 days. The mean tracking duration across individuals was 160.59 ± 129.99 days, indicating 

substantial variation in monitoring effort and temporal coverage. These differences in effort and record 

distribution should be considered in the interpretation of spatial metrics and comparative analyses. 

There is a moderate and statistically significant positive correlation (ρ = 0.58; p = 0.0005; Figure 2) 

between the two metrics, indicating that individuals monitored for a longer period of time tend to have a 

greater number of valid locations recorded throughout the study.  

 

 

Figure 2 - Relationship between monitoring duration and number of locations for each tracked 

Podocnemis unifilis individual. 
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Table 1 - List of Podocnemis unifilis individuals monitored by satellite telemetry. The table presents the species, the sex of the individual (M for male and F 

for female), and the ID (PTT number) code used for satellite monitoring. 
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84213 M K2G 158A 13/07/2019 2019-07-13 2019-12-05 145 72 -3,4556 -51,9632 {2019: 72} 

84214 M K2G 158A 13/07/2019 2019-07-13 2019-12-29 169 33 -3,4535 -51,9655 {2019: 33} 

84216 F K2G 158A 16/10/2019 2020-02-15 2020-03-25 39 33 -3,4235 -51,7271 {2020: 33} 

163007 F K2G 273C 24/11/2014 2017-07-16 2018-07-18 367 113 -3,3889 -52,0186 {2017: 84, 2018: 29} 

163008 F K2G 273C 16/07/2017 2017-07-24 2018-12-07 501 64 -3,4724 -51,9221 {2017: 6, 2018: 58} 

163009 F K2G 273C 17/07/2017 2017-07-17 2018-04-26 283 254 -3,3906 -52,0318 {2017: 156, 2018: 98} 

163012 F K2G 273C 17/07/2017 2017-08-09 2018-02-03 178 20 -3,3364 -51,9997 {2017: 17, 2018: 3} 

163013 F K2G 273C 17/07/2017 2017-07-21 2018-08-09 384 122 -3,4863 -51,9572 {2017: 34, 2018: 88} 

163016 F K2G 273C 26/10/2017 2017-10-29 2018-04-04 157 123 -3,3420 -51,9854 {2017: 33, 2018: 90} 

183636 F K2G 173A 23/09/2019 2019-10-28 2020-05-08 193 123 -3,5140 -51,7027 {2019: 2, 2020: 121} 

183637 M K2G 173A 17/10/2019 2019-11-01 2020-05-12 193 78 -3,5110 -51,7053 {2019: 17, 2020: 61} 

183638 F K2G 173A 17/10/2019 2020-01-12 2020-03-02 50 23 -3,5147 -51,7210 {2020: 23} 

183639 M K2G 173A 17/10/2019 2019-12-07 2020-05-29 174 111 -3,4413 -51,7270 {2019: 5, 2020: 106} 

183643 F K2G 173A 17/10/2019 2019-10-22 2021-03-02 497 510 -3,4457 -51,9400 {2019: 38, 2020: 400, 2021: 72} 

183644 M K2G 173A 19/10/2019 2019-11-27 2020-04-04 129 45 -3,2684 -52,1979 {2019: 6, 2020: 39} 

183645 M K2G 173A 19/10/2019 2019-10-29 2020-03-19 142 21 -3,3357 -52,2081 {2019: 2, 2020: 19} 

183649 F K2G 173A 18/10/2019 2019-10-20 2019-12-16 57 77 -2,7363 -52,0675 {2019: 77} 

183650 F K2G 173A 20/11/2019 2020-01-17 2020-04-21 95 36 -3,4879 -52,2573 {2020: 36} 

183651 F K2G 173A 18/11/2019 2019-12-10 2020-03-17 98 60 -3,6205 -52,3539 {2019: 5, 2020: 55} 

183653 M K2G 173A 18/11/2019 2019-11-27 2020-03-09 103 51 -3,5532 -52,3886 {2019: 38, 2020: 13} 
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183654 M K2G 173A 29/01/2020 2020-01-30 2020-07-19 171 21 -2,7321 -52,0682 {2020: 21} 

183655 M K2G 173A 13/02/2020 2020-02-14 2020-03-24 39 13 -3,3613 -51,7303 {2020: 13} 

183658 F K2G 173A 13/02/2020 2020-02-14 2020-04-06 52 18 -3,4029 -51,7474 {2020: 18} 

183660 M K2G 173A 13/02/2020 2020-04-17 2021-03-16 333 13 -2,7311 -52,0645 {2020: 4, 2021: 9} 

183661 M K2G 173A 23/09/2019 2020-04-20 2020-04-29 9 17 -2,7308 -52,0473 {2020: 17} 

183663 F K2G 173A 27/04/2020 2020-04-28 2020-05-15 17 24 -3,4557 -51,9640 {2020: 24} 

183664 F K2G 173A 27/04/2020 2021-04-23 2021-06-22 60 11 -3,2363 -52,0903 {2021: 11} 

183665 F K2G 173A 17/04/2021 2020-11-17 2021-01-26 70 22 -3,2121 -52,1670 {2020: 7, 2021: 15} 

183666 F K2G 173A 17/11/2020 2020-12-19 2021-04-12 114 43 -3,2862 -52,0727 {2020: 5, 2021: 38} 

183671 F K2G 173A 28/06/2021 2021-10-21 2022-01-07 78 29 -3,2219 -52,1845 {2021: 18, 2022: 11} 

183673 F K2G 173A 13/07/2019 2021-10-21 2022-01-07 78 24 -3,2841 -52,0871 {2021: 18, 2022: 6} 

183674 F K2G 173A 19/07/2019 2019-11-11 2020-04-11 152 78 -3,4321 -51,9430 {2019: 5, 2020: 73} 
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Directional Structure and Spatial Variability in Movement – For males, the mean azimuth 

was 103.13°, with a circular standard deviation of 136.12°. The Rayleigh test did not indicate statistical 

significance (R = 0.0595; p = 0.1936), suggesting the absence of a predominant direction (Figure 3). 

During the low-water period, the males presented a mean orientation of 119.34° (SD = 137.15°), also 

without significance (R = 0.0570; p = 0.2693) (Figure 3). 

In high water, the mean was 53.64° (SD = 113.43°), equally not significant (R = 0.1409; p = 

0.3050), reinforcing the pattern of high seasonal directional dispersion among males (Figure 3). For 

females, the overall mean azimuth was 80.22°, with a circular standard deviation of 149.67°. The 

Rayleigh test was also not significant (R = 0.0330; p = 0.1434), indicating widely distributed movement 

and no predominant orientation trend (Figure 3). In low water, the mean was 79.25° (SD = 155.00°; R = 

0.0257 and p = 0.3356). Comparisons between males and females in both low water (W = 3.4771, df = 

2, p = 0.1758) and high water (W = 0.27084, df = 2, p = 0.8733) were non-significant, indicating similar 

movement patterns between the sexes. Similarly, within each sex, no seasonal differences were 

observed: for females (W = 1.3836, df = 2, p-value = 0.5007) and for males (W = 1.9026, df = 2, p = 

0.3862) (Figure 4; Table 2). 
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Figure 3 - Directional distribution (azimuth) of successive displacements of Podocnemis unifilis 

in the Xingu River, Brazil, according to sex and hydrological season. 

 

Table 2 - Descriptive statistics of the orientation of Podocnemis unifilis displacements in the 

Xingu River, Brazil, based on azimuths between successive locations.  

  

 

 

 

 

Group 
Mean Azimuth 

(°) 
Circular SD (°) R p-value 

Males (overall) 103.13° 136.12° 0.0595 0.1936 

Males (low-water) 119.34° 137.15° 0.0570 0.2693 

Males (high-water) 53.64° 113.43° 0.1409 0.3050 

Females (overall) 80.22° 149.67° 0.0330 0.1434 

Females (low-water) 79.25° 155.00° 0.0257 0.3356 

Comparison Season Factor tested W-statistic df 

Male vs Female 

(Low-water) 
Low-water Sex 3.4771 2 

Male vs Female 

(High-water) 
High-water Sex 0.27084 2 

Females (seasonal) All sectors 
Season 

(Females) 
1,3836 2 
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When considering the river sectors, the results indicated subtle variations in average 

displacement patterns. In the Intermediate sector, the mean azimuth was 101.41°, with an SD of 142.92° 

and a non-significant Rayleigh test (R = 0.0446; p = 0.0775). The Upstream sector had a similar mean 

of 102.15°, with greater dispersion (SD = 168.98°), and no significance (R = 0.0129; p = 0.8696). 

In the downstream sector, a distinct pattern was observed: the mean azimuth was 46.14°, with a 

standard deviation of 102.45°, and the Rayleigh test indicated significant directional orientation (R = 

0.2022; p = 0.0061), suggesting that the displacements in this sector were more directionally 

concentrated (Figure 4). 

Despite the visual differences observed in the average directions and amplitudes of dispersion 

between the sectors of the Xingu River, differences were observed only between the Upstream and 

Intermediate sectors (W = 1.3612; df = 2; p = 0.5063). On the other hand, the comparisons between 

Amount and Downstream (W = 8.8815; df = 2; p = 0.0118) and between Intermediate and Downstream 

(W = 7.1168; df = 2; p = 0.0285) were not significant (Table 3). 
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Figure 4 - Directional distribution (azimuth) of successive displacements of Podocnemis unifilis 

in the Xingu River, Brazil, according to the longitudinal sector of the river and the sex of the 

individuals.  

   

Table 3 - Descriptive statistics of the orientation of the displacements of Podocnemis unifilis by 

sector of the Xingu River (Upstream, Midstream and Downstream) And paired comparisons 

between the sectors based on the Mardia–Watson–Wheeler test, with the respective values of the 

W statistic, degrees of freedom (df) and p-values. 

River Sector Mean azimuth (°) Circular SD (°) Rayleigh R 

Midstream 101.41 142.92 0.0446 

Upstream 102.15 168.98 0.0129 

Downstream 46.14 102.45 0.2022 

Comparison W-statistic df p-value 

Upstream vs. Midstream 1.3612 

2.0 

0.5063 

Upstream vs. Downstream 8.8815 0.0118 

Midstream vs. Downstream 7.1168 0.0285 

 

In all the groups analyzed, movements were not significantly oriented toward the nearest 

river beaches. No combination of sex, river sector, and hydrological season showed p-values 

below the significance threshold (p < 0.05), indicating no preferential orientation toward the 

expected azimuth (Figure 5; Table 4). 
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In the Upstream sector, females during the low-water season had a mean movement 

direction of 114.46°, while the expected direction toward the nearest beach was 156.22°. The V-

test statistic was V = 8.37, with p = 0.259. During the high-water season, the observed mean 

direction was 335.87° (Expected = 135.29°; V = –8.53; p = 0.730; Figure 5; Table 4). 

In the Midstream sector, females showed a mean direction of 106.74° during high water 

(Expected = 191.62°; V = 4.34; p = 0.394), and 326.27° during low water (Expected = 172.21°; 

V = –7.57; p = 0.690). Among males, results were likewise not significant, with p-values  > 0.25 

(Figure 5; Table 4). 

In the Downstream sector, where beaches are spatially closer, females during the low-

water season had a mean movement direction of 37.28°, compared to the expected direction of 

136.30° (V = –2.63; p = 0.665). Males, monitored only during the high-water season, had a mean 

direction of 63.08° (Expected = 136.81°; V = 3.46; p = 0.238). None of these values reached 

statistical significance (Figure 5; Table 4). 

 

Figure 5  - Directional alignment of Podocnemis unifilis movements in relation to the nearest 

river beach, based on group-level V-tests. 

 
Table 4 - V-test results evaluating movement orientation of Podocnemis unifilis individuals 

toward the nearest river beach, grouped by sex, river sector, and hydrological season. 
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Group 
Mean_Observed 

(°) 

Mean_Expected 

(°) 
Nearest Beach 

V-

statistic 

p-

value 

F - Midstream - High-water 106.7 191.6 
Arapuja (Praia Do 

Arapuja) 
4.344 0.394 

F - Midstream - Low-water 326.2 172.2 
Arapuja (Praia Do 

Arapuja) 
-7.566 0.690 

F - Downstream - Low-water 37.2 136.3 Pitanguinha -2.628 0.665 

F - Upstream- High-water 335.8 135.2 
Altamira (Lago 

Da Olaria) 
-8.528 0.730 

F - Upstream - Low-water 114.5 156.2 
Altamira (Lago 

Da Olaria) 
8.373 0.259 

M - Midstream - High-water 214.1 225.5 
Furo Trindade 

(Ilha Do Pirulito) 
4.700 0.310 

M - Midstream - Low-water 91.6 224.2 
Arapuja (Praia Do 

Arapuja) 
-11.808 0.934 

M - Downstream - High-water 68.7 136.8 Pitanguinha 3.461 0.238 

M - Upstream- High-water 85.2 127.1 
Altamira (Lago 

Da Olaria) 
0.755 0.450 

M - Upstream - Low-water 152.8 104.9 
Altamira (Lago 

Da Olaria) 
4.541 0.164 

 

Movement Patterns and Spatial Use - Individuals of Podocnemis unifilis traveled an 

average total distance of 53.8 km (SD = 64.3), with values ranging widely from 1.8 km to 304.5 

km throughout the monitoring period (Table 5). Although some individuals registered 

cumulative displacements exceeding 300 km, their maximum linear ranges were considerably 

smaller, averaging 9.8 km with a maximum of 25.0 km, suggesting movement predominantly 

restricted to localized river stretches. One particular female (ID 163009) traveled over 300 km in 

total but remained within a ~23 km stretch of the river, repeatedly moving within that area. In 

general, long-distance movements were rare, and most individuals exhibited relatively localized 

spatial use patterns. 

On average, females traveled approximately 63 km over the monitoring period, while 

males traveled ~35 km, with mean daily movement rates of ~0.42 km/day and ~0.34 km/day, 

respectively. However, these differences were not statistically significant after controlling for 

monitoring effort, and no effect of sex was detected on total distance traveled (GLM Gamma, p 

= 0.798) or on linear range (GLM Gamma, p = 0.918). 

Females in the Midstream sector during the dry season traveled on average 109.8 km (SD 

= 49.9), with daily movements of approximately 0.4 km/day over monitoring periods lasting up 

to 501 days. In the Upstream sector during the dry season, females also showed extensive 
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movements (mean = 74.6 km, maximum = 304.1 km). In contrast, females in the Downstream 

sector during the dry season traveled on average only 18.7 km, with a daily movement rate of 

~0.3 km/day. Males showed similar patterns: for example, males in the Downstream sector 

during the dry season traveled an average of 13.4 km, with a daily mean of ~0.2 km/day. 

Nevertheless, similar to the pattern observed by sex, sector effects were not statistically 

significant in the GLM (p = 0.109 for Downstream; p = 0.713 for Upstream). On the other hand, 

hydrological season (Season) showed a marginal effect in the model for total distance, with an 

estimated twofold increase in expected distance during the dry season (coefficient = 0.70, p = 

0.094, 95% CI = [–0.12, 1.52]). Although this value did not reach statistical significance, the 

observed variation may be partially associated with differences in monitoring duration. For the 

linear range (Linear_km), no predictor variable (sex, sector, or season) had a statistically 

significant effect (all p > 0.35; Table 6). 
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Table 5 - Descriptive statistics of movement metrics for Podocnemis unifilis by sex, river sector (Upstream, Midstream, Downstream), and hydrological 

season (Low-water and High-water). 
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F 

Midstream High-water 40,0 15,8 18,0 52,0 16,6 14,0 1,8 32,6 11,5 12,0 0,4 25,0 0,6 0,8 

Midstream Low-water 345,6 165,4 152,0 501,0 109,8 49,9 36,7 157,5 11,0 5,9 5,1 17,6 0,4 0,2 

Downstream Low-water 57,0 Not calculated 57,0 57,0 18,7 Not calculated 18,7 18,7 8,7 Not calculated 8,7 8,7 0,3 Not calculated 

Upstream High-water 78,0 25,5 60,0 96,0 11,9 0,5 11,5 12,3 4,0 1,6 2,9 5,1 0,2 0,1 

Upstream Low-water 158,7 103,5 70,0 367,0 74,6 97,0 3,4 304,1 12,3 7,0 2,8 22,4 0,5 0,4 

M 

Downstream High-water 39,0 Not calculated 39,0 39,0 44,4 Not calculated 44,4 44,4 20,6 Not calculated 20,6 20,6 1,1 Not calculated 

Midstream Low-water 170,5 19,8 145,0 193,0 53,6 39,8 11,1 99,3 10,0 4,5 6,4 16,2 0,3 0,2 

Downstream High-water 171,0 162,0 9,0 333,0 13,4 7,2 5,0 17,6 7,1 4,9 2,7 12,3 0,2 0,3 

Upstream Low-water 125,3 19,4 104,0 142,0 30,1 17,6 10,6 44,7 11,6 6,9 3,8 16,9 0,2 0,1 
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Table 6 - Results of generalized linear models (GLMs) with Gamma distribution and log link 

function evaluating the effects of sex, river sector, hydrological season, and tracking effort on 

movement metrics of Podocnemis unifilis. 

Predictor Coef. Std.Err. z P>|z| [0.025 0.975] Response 

Intercept 2,85 0,38 7,41 0,00 2,09 3,60 Total_km 

C(Sex)[T.M] -0,09 0,36 -0,26 0,80 -0,79 0,61 Total_km 

C(Sector)[T.Jusante] -0,87 0,54 -1,60 0,11 -1,93 0,19 Total_km 

C(Sector)[T.Montante] -0,13 0,37 -0,37 0,71 -0,85 0,58 Total_km 

C(Season)[T.Low-water] 0,70 0,42 1,67 0,09 -0,12 1,52 Total_km 

Tracking_days 0,00 0,00 2,59 0,01 0,00 0,01 Total_km 

Intercept 2,30 0,30 7,70 0,00 1,71 2,88 Linear_km 

C(Sex)[T.M] 0,06 0,28 0,22 0,82 -0,48 0,60 Linear_km 

C(Sector)[T.Jusante] -0,45 0,42 -1,06 0,29 -1,27 0,38 Linear_km 

C(Sector)[T.Montante] -0,05 0,28 -0,17 0,87 -0,60 0,51 Linear_km 

C(Season)[T.Low-water] 0,04 0,33 0,13 0,89 -0,59 0,68 Linear_km 

Tracking_days 0,00 0,00 0,54 0,59 0,00 0,00 Linear_km 

Intercept -0,34 0,41 -0,82 0,41 -1,14 0,47 Daily_km 

C(Sex)[T.M] -0,32 0,38 -0,84 0,40 -1,06 0,42 Daily_km 

C(Sector)[T.Jusante] -0,66 0,58 -1,13 0,26 -1,79 0,48 Daily_km 

C(Sector)[T.Montante] -0,37 0,39 -0,94 0,35 -1,13 0,40 Daily_km 

C(Season)[T.Low-water] 0,14 0,45 0,31 0,76 -0,74 1,02 Daily_km 

Tracking_days 0,00 0,00 -1,60 0,11 -0,01 0,00 Daily_km 

 

During the low-water period, spatial distribution was characterized by high-density cores 

concentrated in restricted areas, mostly associated with stable and predictable environments such 

as beaches and exposed riverbanks. These cores, observed mainly in Juncal and Petereçu 

(downstream; Figure 6) Pimental and Rabecas Channel (midstream; Figure 7), and the Palhau 

region (upstream; Figure 8), suggest spatial fidelity and relatively sedentary behavior during this 

period. 

In contrast, the high-water season was marked by a notable expansion in the area of use, 

with increased spatial amplitude and dispersion of density cores, reflecting greater mobility and 

the exploitation of temporarily accessible habitats. This dynamic was most pronounced in the 

midstream (Figure 6) and upstream (Figure 7) sections, where seasonal flooding enhanced 

connectivity among coves, lateral bays, and inundated margins. New usage cores were recorded 



 
PA

 

115 

 

 

in Murituba, Veríssimo, Batata, and Carão (downstream; Figure 6), Boca da Bacaba (midstream; 

Figure 7), and in additional floodable compartments in the Palhau region (upstream; Figure 8).
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Figure 6 - Kernel Density Estimation (KDE) of Podocnemis unifilis spatial use in the downstream section of the Xingu River during low-water (left) 

and high-water (right) seasons. 
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Figure 7 - Kernel Density Estimation (KDE) of Podocnemis unifilis in the midstream section of the Xingu River during low-water (left) and high-

water (right) seasons. 
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Figure 8 - Kernel Density Estimation (KDE) of Podocnemis unifilis in the upstream section of the Xingu River during low-water (left) and high-water 

(right) seasons.
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DISCUSSION 

The results of this study substantially broaden current knowledge on the movement 

patterns of Podocnemis unifilis, especially regarding spatial fidelity and behavioural resilience 

within a hydrologically fragmented context such as the Xingu River, and can be regarded as a 

milestone in the species‘ spatial-ecology research. In light of our findings, we emphasise that the 

seasonal movements of P. unifilis are tightly linked to the hydrological regime of Amazonian 

rivers, corroborating observations that flood-pulse dynamics in tropical floodplain ecosystems 

strongly influence turtle behaviour, whereby individuals adjust their displacements and habitat 

use in response to seasonal shifts in climate and water level (Gibbons 1986; 

Bodie & Semlitsch 2000; Moreira et al. 2011; Simoncini et al. 2022; Rosas et al. 2022). The 

annual hydrological cycle, alternating between flood and drought periods, generates a dynamic 

and complex habitat mosaic. During high water, flooded forests and extensive floodplains 

predominate, whereas permanent water bodies and exposed beaches prevail in the low-water 

season (Junk et al. 1989; Alcantara et al. 2013). 

In our study, we found that during the low-water period the turtles remained concentrated 

near nesting sites and main channels, whereas in the rainy season, with rising water levels, they 

moved more intensely, although without venturing far and covering relatively short linear 

distances that rarely exceeded 25 km. They exhibited strong spatial fidelity, particularly to areas 

such as Juncal and Petereçu beaches (Downstream sector), the Pimental and Rabecas channels 

(Midstream sector) and the Palhau region (Upstream sector). This pattern aligns with studies 

from other Amazonian tributaries in which P. unifilis showed short movements and high fidelity 

to core areas, concentrating near nesting beaches in the dry season and accessing flooded forests 

and temporary waterbodies in the wet season (Naveda-Rodríguez et al. 2018; 

Ponce de Leão et al. 2019; Hinderaker 2021). Thus, for P. unifilis, the seasonal pulse acts more 

as a catalyst for localised displacements than as a trigger for long-distance migrations, in contrast 

with larger species that may travel great distances in response to seasonal changes 

(Moreira et al. 2011; Fachín-Terán et al. 2006). 
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Despite expectations of wider movements due to increased habitat availability during the 

flood season, as shown by Naveda-Rodríguez et al. (2018), Ponce de Leão et al. (2019) and 

Hinderaker (2021), our results revealed only modest spatial expansion. This sedentary strategy, 

previously characterised as ―short-distance migrant‖ for the species, reflects a strong attachment 

to critical habitats such as nesting beaches and nearby lagoons, and has been reported for 

populations in Ecuador and Trombetas Biological Reserve, Brazil 

(Naveda-Rodríguez et al. 2018; Ponce de Leão et al. 2019) as well as for Podocnemis lewyana in 

Colombia, which maintained restricted home ranges and repeatedly reused shelters between 

seasons even in areas with high connectivity among floodplain lakes 

(Forero-Medina et al. 2021). Similarly, Kinosternon leucostomum and Phrynops geoffroanus 

remained faithful to specific floodplain areas and channels despite greater habitat availability in 

the wet season, preferring predictable sites with suitable substrate for digging or 

thermoregulation (Ernst & Lovich 2009). 

The behaviour of P. unifilis in the Xingu therefore exemplifies an ecological syndrome 

common to tropical-river turtles, characterised by localised movement, habitat selectivity and 

repeated use of critical environmental cores throughout the hydrological cycle 

(Pritchard & Trebbau 1984; Moll & Moll 2004). Studies indicate that P. unifilis preferentially 

exploits backwaters, streams, floodplain lagoons and flooded-forest areas adjacent to the river 

during high water rather than undertaking extended upstream or downstream migrations 

(Pritchard & Trebbau 1984; Peñaloza et al. 2013). We cannot discount the influence of 

hydrological fragmentation, which restricts longitudinal movements along the river. This 

behaviour contrasts with that of the larger-bodied Amazon River turtle P. expansa, which can 

move tens to hundreds of kilometres between flood-season foraging areas and dry-season nesting 

sites (Ferrara et al. 2013; Forero-Medina et al. 2019). P. unifilis exhibits more localised space 

use, possibly owing to its smaller body size and its ability to shelter and forage in shallow 

habitats available early in the flood period (Moll & Moll 2004; Fachín-Terán et al. 2006; 

Vogt 2008; Hinderaker 2021). 



 
PA

 

121 

 

 

We cannot rule out alternative strategies within the basin, such as individuals remaining 

in isolated lagoons and nesting in situ, underscoring behavioural plasticity in relation to nesting 

sites (Ferreira Júnior & Castro 2010; Pignati et al. 2013). Such plasticity, documented elsewhere 

in Amazonia, may be an adaptive response to the high environmental unpredictability of the 

flood-pulse system (Fachín-Terán et al. 2006). Notably, P. unifilis typically initiates reproductive 

movements slightly earlier than P. expansa, with studies in the middle Amazon reporting that 

turtles move into flooded forests at the onset of the flood about a month before the larger species, 

taking advantage of small streams and newly inundated areas (Ferreira Júnior & Castro 2010; 

Ponce de Leão et al. 2019). 

Although males showed more directional movements, statistical analyses did not confirm 

significant sex-based differences, supporting the idea that male movement is concentrated 

(Naveda-Rodríguez et al. 2018). Our findings therefore highlight that floodplain areas are as 

critical as nesting beaches for the life cycle of P. unifilis (Ponce de Leão et al. 2019; 

Hinderaker 2021). Orientation tests (Rayleigh and V-test) indicated an absence of significant 

alignment of movements towards the nearest beaches, and no group analysed by sex, sector or 

season exhibited preferential directionality. This suggests that P. unifilis adopts opportunistic 

space-use strategies depending on prior location and immediate habitat availability rather than 

undertaking systematic directional movements to nesting beaches, a behavioural pattern 

described as ―nesting excursions‖ (Morreale et al. 1984; Gibbons et al. 1990) and similarly not 

detected by Naveda-Rodríguez et al. (2018) and Ponce de Leão et al. (2019). Nevertheless, the 

high spatial fidelity observed aligns with Benhamous (2011) concept of ―essential use areas‖, 

whereby individuals of territorial or highly philopatric species consistently reuse the same sites 

over time. 

The absence of significant effects of sex, sector and season on movement metrics (total 

distance, linear displacement and daily displacement) identified by Gamma-GLM models 

underscores the stability of P. unifilis spatial behaviour across hydrological conditions. Although 

higher means were observed for females and during the dry season, these tendencies were not 
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statistically confirmed, indicating high intra-group variability and possible influences of 

unmodelled individual or environmental factors (Spiegel et al. 2017). 

The lack of differentiation among river sectors in terms of displacement, except for the 

downstream sector, which exhibited stronger directional concentration, may relate to 

geomorphological conditions and the accessibility of preferred environments such as beaches 

and backwater channels (Kalacska et al. 2019). The downstream sector was the only one to show 

statistically significant spatial orientation, perhaps due to well-defined natural corridors or 

proximity to protected areas such as the REVIS Tabuleiro do Embaubal that could act as spatial 

attractors (Erickson et al. 2020). Upstream and midstream, forced environmental 

homogenisation, such as in hydraulically regulated reaches, can constrain movement possibilities 

and reduce behavioural plasticity (Alho & Pádua 1982; Barcenas-Garcia et al. 2022a,b). 

Local geomorphology further influences movement patterns. The midstream sector, 

characterised by island channels, rapids and abrupt depth variations, may restrict displacements 

at certain times of year, a factor not fully captured in this study (Fearnside 2015). Such features 

create a mosaic of micro-habitats that pose natural barriers to medium-sized turtles 

(Kalacska et al. 2019). In a hydrologically fragmented environment like the Xingu can become 

an ecological trap because remaining in degraded or intermittent habitats may threaten 

individuals lacking sufficient plasticity to explore new areas (Hale et al., 2016a,b; 

Robertson & Blumstein 2019). This is especially critical where reduced flood pulses and 

diminished lateral flows have drastically altered connectivity with marginal lakes and seasonal 

channels (Fearnside 2015). 

Hydrological constraints impose a new spatial arrangement on P. unifilis populations, 

which become heavily dependent on remnant water bodies and beaches no longer renewed 

annually by river flow. This could intensify intra-specific competition, reduce reproductive 

success and compromise long-term population viability (Lapola et al. 2023). Conserving the 

longitudinal and lateral connectivity of the Xingu is therefore essential for maintaining 

biodiversity and preserving the species‘ ecological dynamics. 
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The observation that females and males share similar spatial patterns even in distinct 

hydrological phases suggests that the species basic ecological requirements can be met within 

geographically limited areas. While this promotes occupancy of high-quality sites, it also 

increases vulnerability to local impacts. Functional extinction of preferred habitats may trigger 

population collapses even without wide dispersal (Erickson et al. 2020). The desaisonalisation 

caused by dams can lead to disorientation, reproductive failure and life-cycle disconnection, 

particularly in species like P. unifilis that rely on environmental cues to initiate movements or 

select nesting areas (Pignati et al. 2013). 

It is important to note that telemetry data were obtained using the Argos satellite system, 

which, although effective in remote areas, has recognised spatial accuracy limitations for species 

with prolonged submersion (Vincent et al. 2002; Costa et al. 2010). Because P. unifilis is 

predominantly aquatic, transmission frequency depends on surfacing time, leading to temporal 

gaps that may distort true trajectories and hinder detection of preferred orientation 

(Patterson et al. 2010; Hooten et al. 2017). Filters such as Douglas-Argos and Local Outlier 

Factor improved data quality, yet these methodological limitations were considered when 

interpreting orientation patterns. 

There was a strong positive correlation between monitoring days and the total number of 

valid locations, indicating that individuals tracked longer provided more robust records. 

Controlling sampling effort in analytical models was therefore essential to avoid underestimation 

of space use for short-tracked individuals (Benhamou 2011; McCrimmon 2018). Although 

corrected, residual errors may still affect detection of fine-scale patterns such as orientation to 

beaches or micro-seasonal adjustments in activity centres. Positional uncertainty, especially in 

dense vegetation, rocky areas with signal reflection or prolonged cloud cover during high water, 

may partly explain non-significant results in directional tests. 

Future studies could incorporate GPS transmitters with internal loggers that record 

high-accuracy locations and transmit via GSM or manual retrieval. Despite greater logistical 

demands, this approach has been successful for large river turtles such as Dermatemys mawii and 
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Batagur baska, offering improved resolution for orientation analysis and micro-habitat use 

(Plummer et al. 2008). 

Hence, our results highlight the urgency of conserving continuous habitat mosaics that 

include not only nesting beaches but also marginal lagoons, seasonal channels, backwaters and 

riparian forests, all of which are essential for maintaining the spatial functionality of P. unifilis. 

 

CONCLUSIONS 

 

This study demonstrated that the movement patterns of Podocnemis unifilis in the middle 

Xingu River are strongly influenced by the seasonality of the hydrological regime. During the 

low-water seasons (dry and ebb periods), a high concentration of individuals was observed in 

permanent aquatic habitats, particularly in areas such as Juncal and Peteruçu (Downstream 

sector), Pimental and Rabecas Channel (Midstream sector), and the Palhau region (Upstream 

sector). These areas were identified as high-density cores, underscoring a behavioral strategy 

aimed at ensuring hydric stability and continuous access to essential resources. Males exhibited 

more directional and concentrated movements, prioritizing stable habitats, likely related to their 

need for consistent resource availability. Conversely, females displayed broader spatial 

dispersion, potentially driven by specific reproductive demands such as selecting elevated 

nesting sites to reduce risks of flooding and predation. 

During the high-water seasons (flood and flooding periods), the movement patterns 

became notably more dispersed, with individuals accessing temporarily inundated habitats such 

as floodplains and flooded forests. These environments provide abundant and diverse food 

resources and essential refuge areas. Females showed increased spatial dispersion during these 

periods, likely due to heightened energetic and nutritional requirements linked to reproduction. 

The utilization of multiple habitat types, enabled by seasonal flooding, appears crucial for 

females to fulfill their biological needs and successfully reproduce. 
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Our analysis also indicated no significant preferential orientation toward specific nesting 

beaches, suggesting flexible and opportunistic reproductive strategies that could minimize 

predation risk and competition for nesting sites. Such spatial flexibility in nesting behavior 

highlights the species adaptive capability to environmental variability and resource availability 

fluctuations, typical of the Amazonian ecosystem. Furthermore, variability among individual 

turtles in spatial behavior, potentially influenced by previous experience and cognitive abilities, 

adds complexity to interpreting movement patterns. 

The results emphasize the fundamental role of the hydrological cycle and habitat 

connectivity in shaping the spatial ecology and reproductive strategies of P. unifilis. The 

ecological impacts observed in different river sectors, particularly the constrained movement in 

the Volta Grande region, illustrate the importance of maintaining habitat connectivity to ensure 

species survival and ecological resilience. 

This study underscores the critical importance of protecting essential habitats, including 

permanent aquatic refuges and elevated nesting sites, increasingly threatened by climate change, 

damming activities, and anthropogenic pressures. Satellite telemetry and spatial analysis 

techniques proved instrumental in identifying core habitat areas and refining conservation 

strategies. Expanding and enhancing long-term monitoring efforts using these advanced 

technologies will be vital to effectively manage threats and maintain viable populations of P. 

unifilis in the rapidly changing landscape of the Xingu River basin. 
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Background: Large hydroelectric dams alter river ecosystems and can affect space use by 

aquatic species. The Amazonian turtle Podocnemis unifilis, classified as Vulnerable, exhibits site 

fidelity and short seasonal movements in natural environments. However, little is known about 

its spatial behavior under altered flow conditions. Therefore, this study aimed to estimate the 
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home range and movement patterns of P. unifilis in the middle Xingu River following the 

implementation of the Belo Monte Hydroelectric Dam. 

Methods: Thirty-two adult individuals (both males and females) were monitored via satellite 

telemetry (Argos system) in three segments of the Xingu River affected by the dam: upstream, 

intermediate (Volta Grande), and downstream. The attached satellite transmitters recorded 

periodic geographic positions. Home range areas (95%) and core areas (50%) for each turtle 

were estimated using five spatial use density methods: MCP, KDE, AKDE, LoCoH, and 

dBBMM. Differences in home range size between sexes, between seasons (high-water vs. low-

water), and among river segments were statistically evaluated (α = 0.05). 

Results: Home range areas exhibited wide individual variation. The mean 95% home range was 

14.40 ± 20.34 km² using MCP, 11.91 km² with KDE, 14.58 km² with AKDE, 14.78 km² with 

LoCoH, and 1.45 km² with dBBMM. The 50% core areas were smaller on average: 1.77 km² 

(MCP), 3.49 km² (KDE), 2.56 km² (AKDE), 2.97 km² (LoCoH), and 0.26 km² (dBBMM). There 

were no significant differences in home range size between males and females or between dry 

and rainy seasons. However, differences emerged among river segments: turtles in the upstream 

reservoir had the largest home ranges, those in the Volta Grande had the smallest, and 

individuals in the downstream stretch showed intermediate values. Most individuals remained 

within the same spatial domain throughout the year, making only local movements without 

expanding their home range. 

Conclusions: P. unifilis demonstrated the ability to persist under these altered conditions, 

maintaining a restricted area of use and localized movements. However, the spatial limitation 

observed especially in the Volta Grande highlights the species vulnerability to habitat 

fragmentation. This underscores the importance of maintaining aquatic connectivity and natural 

hydrological variability in the Xingu River to ensure suitable habitats for the species. 
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BACKGROUND 

The concept of home range in spatial ecology refers to the area in which an individual 

performs its daily activities such as foraging, reproduction, and resting (Burt, 1943; Okubo et al., 

2001; Kie et al., 2010; Powell & Mitchell, 2012). The size and shape of the home range vary 

according to a combination of biotic and abiotic factors (Lagarde et al., 2003). Among the biotic 

factors, age, sex, reproductive stage, diet, and food availability stand out (Burt, 1943; Bodie & 

Semlitsch, 2000; Powell & Mitchell, 2012; Silveria et al., 2022; Enríquez-Mercado et al., 2024). 

Abiotic factors such as temperature, precipitation, water availability, habitat structure, and 

presence of microhabitats also affect the home range by conditioning the accessibility and 

quality of resources (Cagle, 1944; Ponce de Leao et al., 2019; Auge et al., 2023). In addition, 

extrinsic elements such as environmental quality, deforestation, and degradation of water bodies 

may restrict or alter the space used by organisms (Saunders et al., 1991; Rizkalla & Swihart, 

2006; Serrano et al., 2020; Barcenas-Garcia et al., 2022). 

Therefore, understanding a species spatial ecology is essential for its conservation, and in 

the case of threatened species, this becomes even more relevant, as it provides scientific support 

for designing effective management strategies tailored to the species needs (Klemens, 2000; 

Collinge, 2001; Cantrell et al., 2010; Fletcher et al., 2018; Fletcher & Fortin, 2018; Silveria et 

al., 2022). In other words, knowledge of movement patterns, space use, and site fidelity allows 

the identification of critical habitats for survival and reproduction, such as feeding, shelter, and 

nesting areas (Collinge, 1994; Moll & Moll, 2004; Escalona & Vogt, 2008; Norris et al., 2011). 

Furthermore, spatial analysis enables the assessment of how environmental changes such as 

habitat fragmentation, dam construction, loss of connectivity between wetlands, or alteration of 

the hydrological pulse, can disrupt natural movement cycles, affect resource availability, and 
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increase population vulnerability (Perry & Garland, 2002; Berry et al., 2005; Roe et al., 2009; 

Runge et al., 2014; Kays et al., 2015; Allen et al., 2016; Tucker et al., 2018). 

Turtles of the family Podocnemididae have life cycles strongly influenced by the 

hydrological cycles of the Amazonian rivers (Fachín-Terán et al., 2006; De Souza-Alcantara et 

al., 2013; Pignati et al., 2013; Eisemberg et al., 2016; Alzate-Estrada et al., 2020; Erickson et 

al., 2020; Hinderaker, 2021; Ataídes et al., 2021; Simoncini et al., 2022). Species of this family 

use rivers and floodplains seasonally, moving into flooded forests during high-water periods 

(flood and rise) in search of food and shelter, and returning to the main river channels during 

low-water periods to concentrate in deeper pools or access nesting beaches (Alho & Padua, 

1982; Vogt, 2008; Fachín-Terán et al., 1995; Ferrara et al., 2016). Several species of the genus 

Podocnemis undertake long reproductive migrations, traveling tens to hundreds of kilometers to 

reach suitable nesting sites (Mogollones et al., 2010; Carneiro & Pezzuti, 2015). Podocnemis 

expansa (Amazon River turtle), the largest species in the family, is capable of covering large 

distances. Individuals tracked via satellite in the Xingu River exhibited average displacements of 

approximately 401 km, with a maximum recorded distance of 725 km during the post-nesting 

period (Carneiro & Pezzuti, 2015).  

Even smaller species show significant movement. Female Podocnemis sextuberculata 

(iaçá), tracked via radio telemetry, traveled between ~16 and 44 km linearly during migrations 

from streams to nesting beaches, while males remained mostly resident in the same river 

segment (Fachín-Terán et al., 2006). Podocnemis lewyana, endemic to the Magdalena River 

(Colombia), generally exhibits a restricted linear range (<1 km for 85% of individuals), but 

males were observed moving up to 5 km, and reproductive females averaged ~14 km during the 

dry season to reach nesting beaches (Alzate-Estrada et al., 2020). These examples demonstrate 

that some Podocnemididae species can be considered facultative seasonal migrants, ranging from 

short to long distances, remaining resident in a limited area for most of the year, but undertaking 

extensive movements when necessary (Naveda-Rodríguez et al., 2018; Alzate-Estrada et al., 

2020). 
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The yellow-spotted river turtle, Podocnemis unifilis (Testudines: Podocnemididae), is a 

medium-sized species widely distributed throughout the Amazon basin and adjacent rivers. It 

plays a significant ecological role by consuming fruits, seeds, and aquatic invertebrates 

(Balensiefer, 2003; Vogt, 2008; Ferrara et al., 2016; Garcez et al., 2020). Culturally and 

economically, it is also important to riverine communities, historically subjected to high hunting 

pressure and egg collection (Pezzuti et al., 2010; Faria & Malvasio, 2018; Peñaloza et al., 2013; 

Pantoja-Lima et al., 2014; Felix-Silva et al., 2018). As a result, P. unifilis is classified as a 

Vulnerable species in conservation listings, with population declines reported in several regions 

(Rhodin et al., 2018; MMA, 2022; IUCN, 2024). 

Nonetheless, until recently, little was known about its spatial ecology and movement 

patterns, as most studies focused on natural history, reproduction, or genetics, or were based on 

sparse mark-recapture data (Vogt, 2008; Escalona et al., 2009; Trebbau & Pritchard, 2016; 

Eisemberg et al., 2017). More robust studies using radio telemetry and GPS have only begun to 

address this gap in recent years. For example, Naveda-Rodríguez et al. (2018) tracked 63 

individuals using VHF telemetry in Ecuador, providing the first home range estimates for the 

species—approximately 5.2 km² on average—with a mean linear range of ~16 km, indicating 

relatively short seasonal local movements. In Brazil, Ponce de Leão et al. (2019) monitored 

individuals in the Trombetas River Biological Reserve (Pará) and found similar home range 

sizes, with no marked seasonal differences, suggesting that P. unifilis uses distinct seasonal 

habitats (flooded forest versus riverbed) within the same general annual use area. These studies 

suggest that although P. unifilis does not engage in long-range migrations like P. expansa, it 

displays sufficient movement plasticity to adjust to the water pulse, thus being considered a 

short-distance migrator (Naveda-Rodriguez et al., 2018). 

Anthropogenic alterations to the natural hydrological regime can, therefore, significantly 

impact the spatial ecology of P. unifilis. The construction of large hydroelectric dams in the 

Amazon modifies flood and drought patterns, creates upstream reservoirs, and reduces 

downstream flow (Castello & Macedo, 2016; Norris et al., 2018a; Bárcenas-Garcia et al., 2022). 
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These changes can eliminate or flood nesting beaches, alter connectivity between dry and wet 

season habitats, and potentially force adjustments in turtle movement patterns (Norris et al., 

2018a). 

This study was conducted exclusively within a post-dam context, as the Belo Monte 

Hydroelectric Plant (UHE Belo Monte) began full operation in 2016, permanently altering the 

hydrology and ecological connectivity of the Xingu River. Although the immediate impacts of 

dam construction and reservoir filling have been widely addressed in the scientific literature 

(e.g., Castello & Macedo, 2016; Fearnside, 2017; Norris et al., 2018a; Pezzuti et al., 2024), there 

remains a gap regarding the medium- and long-term effects on the behavior and space use of 

aquatic species such as turtles. Based on this, the present research adopts a prospective approach: 

rather than merely documenting well-known alterations, it aims to understand how Podocnemis 

unifilis is currently using space under the new hydrosocial regime and what movement patterns 

are emerging following the stabilization of the plant‘s operational regime. 

Thus, this study represents the first comprehensive assessment of the spatial ecology of 

Podocnemis unifilis in the Xingu River following the hydrological changes caused by the Belo 

Monte Hydroelectric Plant. Using ARGOS satellite telemetry data and multiple home range 

estimation methods, we aimed to understand how individuals of this species use space under 

altered environmental conditions. Specifically, our objectives were: (1) to evaluate the influence 

of biological (sex), hydrological (season), spatial (river sector), and sampling effort (monitoring 

days and number of locations) on home range size estimates across individuals; and (2) to 

compare the performance, consistency, and sensitivity of different home range estimators (MCP, 

KDE, LoCoH, AKDE, dBBMM), assessing their agreement and relative deviations under 

varying ecological conditions. 

 

METHODS 
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Study area – The study was conducted along the Xingu River in the state of Pará, Brazil, 

encompassing three distinct sections based on their longitudinal position relative to the Belo 

Monte/Pimental Hydroelectric Complex: upstream, midstream, and downstream (Figure 1). The 

upstream region comprises the upper course of the Xingu River, located above the Pimental dam, 

including areas within the main reservoir and its immediate tributaries, near the city of Altamira. 

The midstream section is located between the Pimental dam and the main powerhouse of the 

Belo Monte Hydroelectric Plant. The downstream region extends below the powerhouse, 

covering the Volta Grande do Xingu up to the Tabuleiro do Embaubal Wildlife Reserve (REVIS) 

(Figure 1). The climate in the Xingu River basin is classified as humid tropical, with a rainy 

season coinciding with the river‘s rising and flooding period (approximately December to April), 

and a predominant dry season between June and November (ebb and dry phases), resulting in a 

well-defined and seasonal hydrological regime (ANA, 2013; IBGE, 2020). 

The Xingu River is one of the largest tributaries of the Amazon and is classified as a 

clearwater river in the Amazonian typology (Sioli, 1985). It extends approximately 2,500 km and 

drains a basin of about 510,000 km², encompassing transitional areas between the Cerrado and 

Amazon biomes (Goulding et al., 2003). Its hydrography is characterized by a high degree of 

geomorphological heterogeneity, with stretches of floodplain interspersed with rapids, 

anastomosing channels, islands, and várzea areas, particularly prominent in the Volta Grande 

region (Sawakuchi et al., 2015). This geomorphological diversity contributes to the formation of 

various aquatic and riparian microhabitats, promoting high biological diversity (Kalacska et al., 

2019). Due to its ecological complexity and high conservation value, the Xingu River basin has 

been recognized as one of the most important for the conservation of aquatic biodiversity in the 

Brazilian Amazon. It has been the focus of specific public policies for species conservation, such 

as the National Action Plan for the Conservation of Endemic and Threatened Species of the 

Lower and Middle Xingu Region (PAN Baixo e Médio Xingu) (ICMBio, 2012 – Ordinance No. 

16/2012). 
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Figure 1 - Map of the Xingu River stretch in Pará, Brazil, indicating the study area of 32 

individuals monitored between 2017 and 2022. The distribution of the animals is shown between 

the upstream portion (above the Belo Monte dam, including part of the reservoir) and the 

downstream portion (Volta Grande do Xingu, below the dam). 

 

Data collection and monitoring. Individuals were captured using various methods (Balestra et 

al., 2016) during multiple field campaigns along the Xingu River, as part of the Turtle 

Conservation and Management Program of the Belo Monte Hydroelectric Power Plant. Each 

turtle was fitted with a satellite transmitter attached to the posterior portion of the carapace using 

non-toxic epoxy resin (Figure 2). The transmitters (models Kiwisat K2G 158A, K2G 273C, and 

K2G 173A) were programmed to record geographic positions at regular intervals of 2 to 3 hours, 

storing each fix with date, time, and coordinates (latitude/longitude, WGS84 datum). Locations 

were transmitted via satellite uplink (Argos system) whenever the animal surfaced, allowing for 

remote tracking without the need for frequent recapture. 

The temporal segmentation of the analyses was based on the hydrological dynamics of 

the Xingu River, which comprises four seasonal phases: Flooding (Dec–Feb), Flooded (Feb–
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Apr), Ebb (May–Jul), and Dry (Aug–Oct), as described by De Souza Alcantara et al. (2013) and 

Ribeiro et al. (2022). For analytical purposes, these phases were grouped into two broader 

periods: high-water season (Jan–Jun), when the river level rises or reaches its peak, and low-

water season (Jul–Dec), when the water level recedes, exposing sandbanks and beaches that 

serve as nesting sites (Camargo et al., 2015; Dos Santos Franco et al., 2015).  

To maintain spatial independence, each individual was assigned to a single river sector 

(Upstream, Midstream, or Downstream) based on the sector with the highest number of location 

records. Summary metrics such as the total number of locations, monitoring duration (days), and 

point density (locations/day) were calculated for each individual and aggregated by sex, season, 

and river sector. All analyses were performed using R software, version 4.4.1 (R Core Team, 

2024). 

 

Figure 2 - Installation of satellite transmitters (Kiwisat PTT K2G 158A, K2G 273C or K2G 

173A). (A) Female Podocnemis unifilis being handled after transmitter installation. (B) Female 

Podocnemis unifilis being released with newly installed transmitter. (C and D) Male Podocnemis 

unifilis. Image: Norte Energia S.A. 
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Data analysis. Data filtering - Initially, a preliminary evaluation of the collected data was 

performed, during which anomalous signals were excluded. As part of this initial assessment, 

manual filtering of locations was conducted, removing those clearly incorrect or biologically 

unfeasible (e.g., urban areas, roads, or locations incompatible with the ecology and typical 

behavior of the studied species). 

Additionally, all locations classified as Class Z were excluded, as these are known to 

compromise the accuracy and reliability of results due to their low positional quality (Vincent et 

al., 2002; Costa et al., 2010; Patterson et al., 2010; ARGOS, 2016; Hooten et al., 2017). 

Periods of signal discontinuity, characterized by intervals greater than 3 days without 

detections, were handled by separating the data segments into independent records, following the 

methodology propose by Douglas et al. (2012).  

Subsequently, we employed the Douglas-Argos Filter (DAF), which considers criteria 

such as maximum distance between consecutive points and turning angles, aiming to eliminate 

trajectories incompatible with the natural movement behavior of the animals (Douglas et al., 

2012). In the absence of data on the speed of Podocnemis unifilis, a conservative upper threshold 

of 0.5 m/s (1.8 km/h) based on studies carried out with phylogenetically close freshwater turtles 

(Freitas et al., 2008; Shimada et al., 2012). 

Complementing the filtering process, we also applied a statistical approach using the 

Local Outlier Factor (LOF) method, which identifies outlier points based on the local density of 

data (Breunig et al., 2000; Aggarwal, 2015). Points identified as outliers by this method were 

also removed.  

 

Home Range. The data were analyzed using multiple home range estimation methods, 

considering 95% isopleths (total area) and 50% isopleths (core use area). Traditional methods 

that assume independence among locations were applied: MCP (Minimum Convex Polygon; 

Mohr, 1947) and KDE (Kernel Density Estimation; Worton, 1989). In addition, a method that 
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accounts for the temporal autocorrelation of locations was employed—AKDE (Autocorrelated 

Kernel Density Estimation; Calabrese et al., 2016).  

The second approach was the Dynamic Brownian Bridge Movement Model (dBBMM; 

Kranstauber et al., 2012), a trajectory-based method that also incorporates temporal 

autocorrelation but does so in a non-parametric, localized manner. 

Additionally, the Local Convex Hull (LoCoH) method was adapted to include these 

natural spatial restrictions of the Xingu, resulting in a barrier-constrained LoCoH approach (Getz 

& Wilmers, 2004). By automatically excluding polygons (hulls) that intersected exclusion zones 

(buffers) around waterfalls and high-current segments, only areas that were effectively accessible 

were retained during the home range construction process (Getz et al., 2007; Leuchtenberger et 

al., 2013). 

 

Statistical Analysis. – Initially, in order to verify the uniformity and quality of the sampling 

effort among the monitored individuals, three main metrics were calculated: (i) duration of 

monitoring (in days), (ii) total number of locations, and (iii) density of locations per day. The 

comparison of these metrics between the groups was performed using non-parametric tests: 

Mann–Whitney for sex (males vs. females), paired Wilcoxon for hydrological cycles (high-

water; low-water), and Kruskal–Wallis for river sectors (upstream, midstream, downstream) 

(Zar, 2010). 

Then, to identify the factors influencing the size of the home range of Podocnemis 

unifilis, Generalized Linear Models (GLMs) with Gamma distribution and log linkage function 

were fitted (Kie et al., 2010). The response variables consisted of the estimates of the life area 

obtained by different analytical methods (MCP, KDE, LoCoH, AKDE and dBBMM), 

considering separately the isochronous ones of 95% (total area) and 50% (core use) (Mohr, 

1947; Worton, 1989; Getz & Wilmers, 2004; Kranstauber et al., 2012; Calabrese et al., 2016). 

As explanatory variables, sex, hydrological station, river sector, and sampling effort measures 
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(number of days and number of locations per individual) were included. Each model was 

independently tuned for each living area metric. 

In addition, in order to compare the performance between the estimation methods, the 

data were restructured in long format, allowing the adjustment of integrated GLM models with the 

fixed effects "method" and "isocline", in addition to the same environmental, biological and stress 

covariates. The differences between the methods were evaluated using contrasts adjusted in the 

emmeans package, with control for the other variables of the model (Lenth, 2020). In addition, the 

consistency between the metrics was examined using Spearman correlations (Zar, 2010), Bland–

Altman plots (Bland & Altman, 1986; Sadler et al., 2018), and intra- and intergroup coefficients of 

variation. 

All analyses were performed using Rstudio software version 4.4.1 (R Core Team, 

2024).com the stats, ggplot2 (Wickham, 2016), dplyr (Wickham et al., 2023) and emmeans 

(Lenth, 2020) packages. The residuals of the models were visually evaluated, and the assumptions 

were verified based on the homogeneity of the variance and the fit to the specified distribution. 

 

RESULTS 

 

General Movement Data – Of the 32 Podocnemis unifilis individuals monitored between 

July 2017 and March 2022 (21 females and 11 males) were retained for home range analyses after 

the screening process (Table 1). After completing the filtering process, approximately 48,32% of 

the original signals were removed, reducing the initial dataset from 4,685 to 2,264 final signals 

(Figure 3; Figure 4; Table 1).  

Monitoring effort varied widely among individuals, with tracking durations ranging from 

8 to 500 days (mean = 149.47 ± 111.03 days), totaling 4,484 animal-days. The longest tracking 

was for female 163008 (500 days), although with low location density (0.11 loc/day). In contrast, 

female 183649 had the highest density (1.38 loc/day) over 57 days. Across sectors, tracking 

duration and location density showed high individual variability, with no significant differences 
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between sexes (all U = 147,5, p > 0.21), hydrological seasons (W = 42.0, p > 0.06), or river 

sectors (U = 3.53, p > 0.17). Among the 20 individuals monitored in both seasons, no statistical 

differences were found in tracking duration, number of locations, or daily location density (all p > 

0.06) (Table 3; Figure 5A–I). 

 

Figure 3 - Boxplots of geographic coordinates (latitude and longitude) of individuals tracked by 

ARGOS telemetry, with and without outliers, in the middle Xingu River, Pará, Brazil. 
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Figure 4 - Spatial distribution of turtle location records across three sectors of the Xingu River: 

downstream (black dots), midstream (gray dots), and upstream (orange dots). 
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Table 1 - List of Podocnemis unifilis individuals monitored by satellite telemetry. The table presents the species, the sex of the individual (M for male and F 

for female), and the ID (PTT number) code used for satellite monitoring. 
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84213 M K2G 158A 13/07/2019 2019-07-13 2019-12-05 145 72 -3,4556 -51,9632 {2019: 72} 

84214 M K2G 158A 13/07/2019 2019-07-13 2019-12-29 169 33 -3,4535 -51,9655 {2019: 33} 

84216 F K2G 158A 16/10/2019 2020-02-15 2020-03-25 39 33 -3,4235 -51,7271 {2020: 33} 

163007 F K2G 273C 24/11/2014 2017-07-16 2018-07-18 367 113 -3,3889 -52,0186 {2017: 84, 2018: 29} 

163008 F K2G 273C 16/07/2017 2017-07-24 2018-12-07 501 64 -3,4724 -51,9221 {2017: 6, 2018: 58} 

163009 F K2G 273C 17/07/2017 2017-07-17 2018-04-26 283 254 -3,3906 -52,0318 {2017: 156, 2018: 98} 

163012 F K2G 273C 17/07/2017 2017-08-09 2018-02-03 178 20 -3,3364 -51,9997 {2017: 17, 2018: 3} 

163013 F K2G 273C 17/07/2017 2017-07-21 2018-08-09 384 122 -3,4863 -51,9572 {2017: 34, 2018: 88} 

163016 F K2G 273C 26/10/2017 2017-10-29 2018-04-04 157 123 -3,3420 -51,9854 {2017: 33, 2018: 90} 

183636 F K2G 173A 23/09/2019 2019-10-28 2020-05-08 193 123 -3,5140 -51,7027 {2019: 2, 2020: 121} 

183637 M K2G 173A 17/10/2019 2019-11-01 2020-05-12 193 78 -3,5110 -51,7053 {2019: 17, 2020: 61} 

183638 F K2G 173A 17/10/2019 2020-01-12 2020-03-02 50 23 -3,5147 -51,7210 {2020: 23} 

183639 M K2G 173A 17/10/2019 2019-12-07 2020-05-29 174 111 -3,4413 -51,7270 {2019: 5, 2020: 106} 

183643 F K2G 173A 17/10/2019 2019-10-22 2021-03-02 497 510 -3,4457 -51,9400 {2019: 38, 2020: 400, 2021: 72} 

183644 M K2G 173A 19/10/2019 2019-11-27 2020-04-04 129 45 -3,2684 -52,1979 {2019: 6, 2020: 39} 

183645 M K2G 173A 19/10/2019 2019-10-29 2020-03-19 142 21 -3,3357 -52,2081 {2019: 2, 2020: 19} 

183649 F K2G 173A 18/10/2019 2019-10-20 2019-12-16 57 77 -2,7363 -52,0675 {2019: 77} 

183650 F K2G 173A 20/11/2019 2020-01-17 2020-04-21 95 36 -3,4879 -52,2573 {2020: 36} 

183651 F K2G 173A 18/11/2019 2019-12-10 2020-03-17 98 60 -3,6205 -52,3539 {2019: 5, 2020: 55} 

183653 M K2G 173A 18/11/2019 2019-11-27 2020-03-09 103 51 -3,5532 -52,3886 {2019: 38, 2020: 13} 
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183654 M K2G 173A 29/01/2020 2020-01-30 2020-07-19 171 21 -2,7321 -52,0682 {2020: 21} 

183655 M K2G 173A 13/02/2020 2020-02-14 2020-03-24 39 13 -3,3613 -51,7303 {2020: 13} 

183658 F K2G 173A 13/02/2020 2020-02-14 2020-04-06 52 18 -3,4029 -51,7474 {2020: 18} 

183660 M K2G 173A 13/02/2020 2020-04-17 2021-03-16 333 13 -2,7311 -52,0645 {2020: 4, 2021: 9} 

183661 M K2G 173A 23/09/2019 2020-04-20 2020-04-29 9 17 -2,7308 -52,0473 {2020: 17} 

183663 F K2G 173A 27/04/2020 2020-04-28 2020-05-15 17 24 -3,4557 -51,9640 {2020: 24} 

183664 F K2G 173A 27/04/2020 2021-04-23 2021-06-22 60 11 -3,2363 -52,0903 {2021: 11} 

183665 F K2G 173A 17/04/2021 2020-11-17 2021-01-26 70 22 -3,2121 -52,1670 {2020: 7, 2021: 15} 

183666 F K2G 173A 17/11/2020 2020-12-19 2021-04-12 114 43 -3,2862 -52,0727 {2020: 5, 2021: 38} 

183671 F K2G 173A 28/06/2021 2021-10-21 2022-01-07 78 29 -3,2219 -52,1845 {2021: 18, 2022: 11} 

183673 F K2G 173A 13/07/2019 2021-10-21 2022-01-07 78 24 -3,2841 -52,0871 {2021: 18, 2022: 6} 

183674 F K2G 173A 19/07/2019 2019-11-11 2020-04-11 152 78 -3,4321 -51,9430 {2019: 5, 2020: 73} 
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Table 2 - Summary of monitoring effort for Podocnemis unifilis individuals tracked in the 

middle Xingu River, organized by sex, river sector, and hydrological season. SD was not 

calculated for groups with only one individual. 

Sector 
Hydrological 

Season 
Sex ID 

Monitoring 

Days 

Total 

Locations 
Density (loc/day) 

Upstream 
Low-water F 163009 366 85 0.23 

High-water F 163007 159 28 0.18 

Midstream 
Low-water F 163008 500 55 0.11 

High-water F 183643 425 183 0.43 

Downstream 
Low-water F 183649 57 77 1.38 

High-water M 183660 332 13 0.04 

Sex Sector Season n 

Monitoring 

Days (Mean ± 

SD) 

Total 

Locations 

(Mean ± SD) 

Density (Mean ± 

SD) 

F 

Downstream Low-water  1 56.0 ± nan 77.0 ± nan 1.38 ± nan 

Midstream 
High-water  9 117.9 ± 123.4 58.4 ± 58.2 0.62 ± 0.41 

Low-water  5 273.6 ± 231.7 93.8 ± 134.5 0.29 ± 0.31 

Upstream 
High-water  11 64.4 ± 50.6 35.5 ± 33.0 0.78 ± 0.52 

Low-water  9 89.1 ± 113.8 38.2 ± 50.7 0.5 ± 0.29 

M 
Downstream High-water  3 146.0 ± 167.2 16.7 ± 3.5 0.79 ± 1.16 

Midstream High-water  3 99.7 ± 53.4 60.0 ± 46.5 0.54 ± 0.25 
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Figure 5 - Monitoring effort comparison by sex, hydrological season, and river sector for 

Podocnemis unifilis individuals monitored in the middle Xingu River. A) Monitoring duration 

by sex; B) Total number of location records by sex; C) Monitoring duration by hydrological 

season; D) Total number of location records by hydrological season; E) Monitoring duration by 

river sector; F) Total number of location records by river sector; G) Daily location frequency 

by sex; H) Daily location frequency by hydrological season; I) Daily location frequency by 

river sector. 

 

Home range sizes - The mean 95% home range area was 14.40 ± 20.34 km² using MCP, 11.91 

km² with KDE, 14.58 km² with AKDE, 14.78 km² with LoCoH, and 1.45 km² with dBBMM. 

The 50% core areas showed lower means: 1.77 km² (MCP), 3.49 km² (KDE), 2.56 km² 

(AKDE), 2.97 km² (LoCoH), and 0.26 km² (dBBMM). LoCoH and AKDE produced the largest 

95% estimates on average, whereas dBBMM consistently returned substantially lower area 
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values. A similar pattern was observed for the core areas, with dBBMM yielding markedly 

smaller 50% ranges compared to the other methods. 

Females had larger average areas than males in the 95% isopleths for most methods: 

MCP 95% in the upstream/low-water combination: 51.62 ± 29.99 km² in females vs. 12.71 ± 

4.90 km² in males. In the 50% isopleths, sex-related differences were smaller (e.g., MCP 50% 

in midstream/low-water: females 2.60 ± 5.19 km² vs. males 1.27 ± 0.79 km²). 

For instance, in the upstream sector, females had 39.81 ± 31.64 km² during low-water 

vs. 24.18 ± 29.53 km² during high-water using KDE (Figure 6). Core (50%) areas varied less 

between seasons. 

Regarding river sector, the smallest values occurred downstream (e.g., MCP 95% in 

males: 1.93 ± 1.65 km²), while the largest areas were observed upstream (e.g., AKDE 95% in 

females: 34.24 ± 14.00 km²). Core areas followed a similar trend: LoCoH 50% ranged from 

0.23 ± 0.00 km² (downstream/females) to 4.63 ± 4.58 km² (upstream/females). In some cases, 

however, midstream males exhibited larger core areas than those upstream (e.g., KDE 50%: 

4.16 ± 2.69 km² vs. 2.72 ± 2.78 km). 

 

 

Figure 6 - 95% home range area (km²) by river section (Upstream, Midstream, Downstream) 

for each estimator: (A) MCP, (B) KDE, (C) LoCoH, (D) AKDE, (E) dBBMM. 
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Table 3 - Individual-level estimates of home range size (in km²) for Podocnemis unifilis in the Xingu River, calculated using multiple methods. Values 

correspond to isopleths of 95% (total area) and 50% (core area of use). Methods include Minimum Convex Polygon (MCP), Kernel Density Estimation 

(KDE), Local Convex Hull (LoCoH), Autocorrelated Kernel Density Estimation (AKDE) and Dynamic Brownian Bridge Movement Model 

(dBBMM). 

ID 
MCP* KDE AKDE LOCOH dBBMM 

95% 50% 95% 50% 95% 50% 95% 50% 95% 50% 

84213 33,15 1,75 31,29 6,15 9,91 2,32 12,59 0,89 1,31 0,24 

84214 0,07 0,03 1,38 0 3,35 0,77 1,58 0,06 0,43 0,09 

84216 0,03 0,01 0,03 0,01 2,96 0,73 0,03 0,01 0,14 0,04 

163007 25,25 4,2 10,8 0,38 31,41 5,63 12,09 5,27 2,75 0,49 

163008 35,01 0,89 38,5 11,78 29,19 3,82 40,89 4,79 2,09 0,32 

163009 79,54 1,65 74,14 5,22 47,54 3,31 76,77 1,78 6,16 1,02 

163012 2,83 0,57 10,4 2,17 18,98 4,42 20,05 6,26 0,75 0,17 

163013 36,21 14,02 15,23 3,27 48,42 7,62 34,01 11,82 4,11 0,52 

163016 61,63 11,72 15,21 8,55 24,36 4,13 55,97 16,96 3,72 0,51 

183636 8,13 0,77 16,56 2,1 18,23 1,95 11,87 1,2 2,8 0,63 

183637 9,77 1,95 25,26 4,71 22,43 3,87 11,12 2,75 2,84 0,61 

183638 0,51 0,01 0,28 0,1 5,82 1,2 1,03 0,14 0,48 0,12 

183639 2,09 0,33 6,14 0,99 9,18 1,48 3,8 0,47 1,65 0,35 

183643 1,66 0,14 2,46 0,26 4,83 0,82 2,03 0,15 1,42 0,17 

183644 0,57 0,03 1,13 0,36 6,14 0,94 0,49 0,08 0,6 0,12 

183645 9,06 0,06 14,09 4,48 7,53 1,78 19,66 0,92 0,91 0,13 

183649 7,47 0,26 2,58 0,52 7,45 1,46 3,49 0,23 1,15 0,26 

183650 0,52 0,09 0,67 0,52 6,03 1,22 1,37 0,24 0,71 0,16 

183651 3,61 0,5 2,18 0,6 16,12 2,17 9,75 0,67 1,76 0,39 

183653 14,81 6,06 13,39 7,23 22,18 4,98 11,82 7,25 1,91 0,35 

183654 3,92 0,08 2,33 2,24 16,92 2,36 8,55 0,37 0,53 0,12 
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ID 
MCP* KDE AKDE LOCOH dBBMM 

95% 50% 95% 50% 95% 50% 95% 50% 95% 50% 

183655 6,17 0 32,83 26,64 23,57 6,48 36,37 3,63 0,65 0,07 

183658 21,51 0,13 18,71 6,27 8,73 1,58 1,23 0,38 0,65 0,11 

183660 0,42 0 4,59 0 7,17 1,89 12,26 3,34 0,55 0,1 

183661 0,74 0 0,5 0,02 7,25 1,63 0,82 0,34 0,52 0,12 

183663 26,22 7,02 0 0 3,56 0,24 14,6 10,03 0,65 0,08 

183664 0,07 0 2,93 1,14 12,01 2,24 3,1 0,07 0,36 0,08 

183665 10,33 0,64 9,92 1,41 15,66 3,78 17,61 5,68 1,01 0,19 

183666 0,01 0 0,22 0,19 1,82 0,52 0,86 0,01 0,45 0,06 

183671 0,65 0,01 0,43 0,02 3,39 0,79 0,71 0,17 0,51 0,11 

183673 56,55 3,16 24,52 13,26 16,96 4,51 43,97 8,55 1,12 0,15 

183674 2,34 0,51 2,33 1,25 7,37 1,43 2,35 0,63 1,78 0,4 

Mean 14,4 1,77 11,91 3,49 14,58 2,56 14,78 2,97 1,45 0,26 

SD 20,34 3,41 15,69 5,50 11,93 1,86 18,42 4,15 1,33 0,22 
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Table 4 - Mean home range sizes (± SD, in km²) of Podocnemis unifilis in the Xingu River, grouped by sex, river section (Upstream, Midstream, 

Downstream), and hydrological season (high-water and low-water). 

Sex Sector Season 
MCP KDE AKDE LoCoH dBBMM 

95% 50% 95% 50% 95% 50% 95% 50% 95% 50% 

F 

Midstream 
High-water 8.22 ± 11.07 1.76 ± 3.88 7.52 ± 8.09 1.43 ± 1.95 12.17 ± 12.3 1.77 ± 1.83 7.93 ± 10.13 1.92 ± 3.59 1.83 ± 1.03 0.32 ± 0.21 

Low-water 11.5 ± 15.43 2.6 ± 5.19 8.92 ± 11.81 2.14 ± 3.69 15.21 ± 16.95 2.35 ± 2.58 12.09 ± 15.85 2.69 ± 4.4 1.97 ± 1.0 0.25 ± 0.13 

Upstream Low-water 7.47 ± 0.0 0.26 ± 0.0 2.58 ± 0.0 0.52 ± 0.0 7.45 ± 0.0 1.46 ± 0.0 3.49 ± 0.0 0.23 ± 0.0 1.15 ± 0.0 0.26 ± 0.0 

Downstream 
High-water 37.79 ± 33.7 3.57 ± 4.59 24.18 ± 29.53 3.76 ± 3.53 24.21 ± 15.79 2.98 ± 1.42 36.18 ± 30.99 5.25 ± 6.66 3.04 ± 2.14 0.5 ± 0.34 

Low-water 51.62 ± 29.99 3.12 ± 3.1 39.81 ± 31.64 4.12 ± 3.45 34.24 ± 14.0 3.9 ± 1.29 47.01 ± 30.51 4.63 ± 4.58 4.01 ± 2.14 0.66 ± 0.35 

M 

Midstream 
High-water 4.98 ± 3.59 0.86 ± 0.79 14.54 ± 10.26 4.1 ± 6.54 14.71 ± 6.64 2.65 ± 1.54 8.63 ± 8.48 1.47 ± 1.22 1.98 ± 0.67 0.42 ± 0.16 

Low-water 20.2 ± 15.15 1.27 ± 0.79 21.72 ± 13.12 4.16 ± 2.69 9.85 ± 5.69 2.09 ± 0.96 9.19 ± 4.84 0.91 ± 0.81 1.3 ± 0.72 0.26 ± 0.16 

Upstream 

 

High-water 1.93 ± 1.65 0.03 ± 0.04 2.29 ± 1.59 0.9 ± 1.11 11.1 ± 4.8 1.99 ± 0.32 6.89 ± 4.64 1.13 ± 1.32 0.53 ± 0.01 0.11 ± 0.01 

Low-water 3.92 ± nan 0.08 ± nan 2.33 ± nan 2.24 ± nan 16.92 ± nan 2.36 ± nan 8.55 ± nan 0.37 ± nan 0.53 ± nan 0.12 ± nan 

Downstream 
High-water 5.45 ± 5.75 1.14 ± 2.35 6.84 ± 6.36 2.72 ± 2.78 9.45 ± 6.1 1.9 ± 1.51 7.69 ± 8.43 1.62 ± 2.71 0.92 ± 0.49 0.17 ± 0.09 

Low-water 12.71 ± 4.9 5.01 ± 2.31 11.82 ± 4.19 6.21 ± 2.36 19.45 ± 6.02 4.31 ± 1.47 10.68 ± 4.3 6.04 ± 2.67 1.7 ± 0.48 0.31 ± 0.09 
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Despite the differences in area values estimated by the various methods, no significant 

differences were found between males and females in home range size across any of the 

estimators, nor was any consistent effect of hydrological season (high-water versus low-water) 

detected (Figure 7). For the 95% isopleth, the MCP, KDE, LoCoH, and AKDE methods 

showed a visible reduction in median home range area during the high-water season, 

particularly for MCP and LoCoH (Figure 7). Although dBBMM produced smaller estimates in 

absolute terms, it also reflected this seasonal reduction, with slightly larger median ranges 

observed in the low-water period compared to the high-water period. 

For the 50% core areas, seasonal differences were less pronounced, but the same 

direction of variation was observed: in all methods, core areas tended to be larger during the 

low-water season and more restricted during the high-water season. Notably, AKDE and 

LoCoH displayed greater interindividual variability in the dry season, suggesting that some 

turtles expanded their space use during this period. 

 

Figure 7 - Comparison of home range areas (95% isopleth and 50%) between low-water and 

high-water seasons for each method. 

 

Individuals located in the upstream sector tended to have substantially larger home 

ranges than those in the midstream sector, while individuals in the downstream sector exhibited 

the smallest estimated ranges (Table 5). This pattern was most pronounced for the LoCoH and 

AKDE methods, where LoCoH 95% home ranges in the upstream sector were, on average, 



 
PA

 

177 

 

 

approximately four times larger (e
1.391 

≈ 4.0) than those in the midstream (Table 5; p < 0.001 

for the Upstream vs. Midstream comparison), whereas LoCoH estimates for the downstream 

sector did not differ significantly from the midstream. A similar increase was observed with 

AKDE (coefficient for Upstream vs. Midstream ranging from 0.406 to 0.416; p < 0.05; Table 

5), and also for core areas estimated by MCP, with 50% MCP in the upstream sector being 

significantly larger than in the midstream (p = 0.035; Table 5). Conversely, the downstream 

sector exhibited significantly smaller 95% ranges under KDE (coefficient for Downstream vs. 

Midstream = –1.597; p = 0.009; Table 5), as well as a marginal reduction in 50% areas 

estimated by MCP (p = 0.063; Table 5). In most methods, turtles in the upstream sector showed 

higher median 95% home range values and greater variability, while individuals from the 

downstream sector consistently exhibited lower estimates. 

Monitoring duration had a strong positive effect on estimated home range size across 

nearly all methods (Table 3). Longer tracking periods resulted in significantly larger ranges (p 

< 0.01 for KDE, LoCoH, AKDE, and dBBMM; Table 5), as well as more extensive 50% core 

areas. For example, in the LoCoH model, an approximate 0.6% increase in estimated area was 

observed for each additional day of monitoring (Table 5). In contrast, the effect of the number 

of locations (telemetry fixes) was inconsistent after accounting for duration. In several cases, 

particularly in models for 50% core áreas, a greater number of fixes was associated with 

slightly smaller estimated ranges (e.g., KDE 50% and AKDE 50% showed small but significant 

negative coefficients for number of locations; Table 5). 

Despite differences in absolute area estimates, the five home range estimation methods 

showed high concordance in the relative ranking of individuals. Spearman rank correlations 

between pairs of methods were high, ranging from 0.72 to 0.95 for the 95% isopleths, and 

although slightly lower, they were also significant for the 50% isopleths. In particular, AKDE 

and KDE showed ρ ≈ 0.82, and MCP vs. LoCoH showed ρ ≈ 0.95. Even dBBMM, despite 

producing more conservative absolute estimates, maintained strong correlations with the 

traditional methods, with ρ ranging from 0.72 to 0.81 relative to AKDE, MCP, KDE, and 
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LoCoH (Figure 8). For the 50% core areas, correlations remained positive but were more 

variable: for example, MCP vs. KDE 50% showed ρ ≈ 0.89, while KDE vs. dBBMM 50% 

showed a weaker correlation (ρ ≈ 0.64; Figure 8). 

 

Figure 8 - Spearman correlation matrices for home range size estimates by different methods 

(95% isopleth and 50% isopleth). 

For the 95 % isopleths, the pairs involving the trajectory-based estimator exhibited the largest 

discrepancies: LoCoH vs. dBBMM showed a mean bias of +13.9 km², with limits of 

agreement (±1.96 SD) ranging from –20.5 to +48.2 km², indicating that dBBMM 

systematically underestimates total home-range areas relative to LoCoH, especially for 

wide-ranging individuals. Among the purely polygonal estimators, differences were modest: 

MCP vs. KDE displayed a bias of +2.5 km² (–23.7 to +28.7 km²), and MCP vs. LoCoH was 

virtually identical (–0.9 km²; –20.0 to +18.2 km²), suggesting convergence in delineating the 

outer contour of the home range. The comparison KDE vs. AKDE yielded a negative bias (–

2.7 km²; –24.5 to +19.1 km²). 

In the 50 % isopleths, deviations were even smaller. MCP estimated areas 1.7 km² 

smaller than KDE (–13.6 to +10.1 km²) and 1.2 km² smaller than LoCoH (–5.2 to +2.8 km²), 

whereas KDE exceeded AKDE by only +0.9 km² (–8.1 to +10.0 km²). The largest positive bias 

remained in LoCoH vs. dBBMM (+2.7 km²; –5.3 to +10.7 km²), confirming that dBBMM 

remains more conservative even for core-use areas. Together, these results demonstrate that 
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substantial method-specific differences emerge primarily when trajectory-based estimators 

(dBBMM) are contrasted with polygonal approaches, with the impact proportionally greater at 

the 95 % than at the 50 % home-range level (Figure 9). 

 

 

 

Figure 9 - Bland–Altman plots comparing four estimator pairs for home-range areas: 

MCP versus KDE, MCP versus LoCoH, KDE versus AKDE, and LoCoH versus 

dBBMM, shown separately for the 95 % and 50 % isopleths.
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Table 5 - Gamma GLM results for MCP, KDE, LoCoH, AKDE and dBBMM home range area (95% and 50% isopleths). Coefficients (with standard errors) 

are on the log scale (Gamma regression with log-link).  

Predictor 

MCP KDE LoCoH AKDE dBBMM 

95% 50% 95% 50% 95% 50% 95% 50% 95% 50% 
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Intercept 
1.775 

(0.511) 
<0.

001 

-1.443 

(0.661) 
0.0

29 

1.583 

(0.434) 
<0.

001 

0.574 

(0.472) 

0.2

24 

0.745 

(0.402) 

0.06

4 

-0.400 

(0.531) 

0.45

2 

1.794 

(0.251) 
<0.

001 

0.313 

(0.234) 

0.18

2 

-0.244 

(0.238) 

0.3

05 

-1.690 

(0.239) 
<0.

001 

Sex (M vs F) 
-0.460 

(0.413) 

0.26

6 

0.086 

(0.534) 

0.8

72 

0.225 

(0.351) 

0.52

1 

0.243 

(0.382) 

0.5

26 

-0.093 

(0.325) 

0.77

5 

-0.164 

(0.430) 

0.70

3 

0.028 

(0.203) 

0.88

9 

0.067 

(0.189) 

0.72

4 

0.027 

(0.192) 

0.8

90 

0.045 

(0.194) 

0.81

5 

Season (Low-water vs 

High-water) 

0.280 

(0.355) 

0.43

0 

0.355 

(0.459) 

0.4

39 

0.175 

(0.301) 

0.56

0 

0.123 

(0.328) 

0.7

08 

0.239 

(0.279) 

0.39

2 

0.113 

(0.369) 

0.76

0 

0.044 

(0.174) 

0.80

2 

0.062 

(0.163) 

0.70

5 

0.114 

(0.165) 

0.4

88 

0.107 

(0.166) 

0.51

8 

Sector (Downstream 

vs Midstream) 

-0.651 

(0.718) 

0.36

4 

-1.728 

(0.928) 

0.0

63 

-1.597 

(0.609) 
0.00

9 

-0.995 

(0.663) 

0.1

33 

0.079 

(0.564) 

0.88

9 

-1.015 

(0.746) 

0.17

4 

0.191 

(0.353) 

0.58

8 

-0.000 

(0.329) 

0.99

9 

-0.542 

(0.334) 

0.1

05 

-0.506 

(0.336) 

0.13

2 

Sector (Upstream vs 

Midstream) 

0.663 

(0.406) 

0.10

2 

1.104 

(0.524) 
0.0

35 

0.204 

(0.345) 

0.55

3 

0.516 
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0.1

69 

1.391 
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001 

1.423 

(0.422) 
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001 
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(0.199) 
0.04

1 

0.416 

(0.186) 

0.02

5* 
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0.7

92 
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(days) 

0.003 
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7 

0.007 

(0.002) 
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07 

0.003 

(0.002) 
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8 
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(0.002) 
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48 

0.006 

(0.001) 
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001 
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(0.002) 
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001 

0.004 

(0.001) 
<0.

001 

0.004 

(0.001) 
<0.

001 

0.002 

(0.001) 
0.0

27 

0.001 

(0.001) 

0.21

3 

Number of locations 
0.000 

(0.002) 

0.94

9 

-0.000 

(0.003) 

0.9

97 

0.001 

(0.002) 

0.48

1 

-0.005 

(0.002) 
0.0
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DISCUSSION 

 

The results show that yellow-spotted river turtles (Podocnemis unifilis) tracked in the 

Xingu River exhibit high site fidelity, remaining within relatively narrow river sectors despite 

the annual hydrological oscillations (Ribeiro et al., unpublished data). This pattern suggests 

that P. unifilis possesses a refined spatial knowledge of its immediate surroundings, routinely 

returning to familiar areas that provide predictable food resources, refuges, and 

thermal-regulation sites (Benhamou, 2011; Moll & Moll, 2004). In general, the extent of their 

home ranges fell within the limits reported for other Amazonian populations of the species and 

remained below values typical of larger congeners such as P. expansa (Bock et al., 1998; 

Fachín-Terán et al., 2006).  

Although a few individuals displayed slightly broader areas of use, probably linked to 

body size, maturity, or reproductive demands (Ross et al., 2019) the set of estimates obtained 

here corroborates the restricted spatial behavior usually attributed to the species 

(Naveda-Rodríguez et al., 2018; Ponce de Leão et al., 2019; Hinderaker, 2021; 

Ribeiro et al., 2025, unpublished data). 

This combination of micro-habitat fidelity and compact home ranges appears to be an 

energy-optimization strategy in which smaller-bodied individuals minimize long movements by 

concentrating in environments where food and shelter are predictably available throughout the 

flood–dry cycle (Gibbons, 1986; Bodie & Semlitsch, 2000). Remaining in known territories may 

also reduce exposure to predators and intraspecific competition, conferring an adaptive 

advantage in hydrodynamically complex rivers such as the Xingu (Junk et al., 1989; 

Alcântara et al., 2013). 

Home-range estimates (95 %) varied widely across algorithms—from just 1.45 km² with 

dBBMM, which incorporates the temporal structure of trajectories and is therefore more 

conservative (Kranstauber et al., 2012), to about 15 km² with AKDE, which corrects for spatial 

autocorrelation (Noonan et al., 2019), and LoCoH, whose local convex hulls follow fluvial 
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topography more precisely (Getz & Wilmers, 2004). At the 95 % isopleth, females occupied 

significantly larger areas than males, whereas 50% core areas were similar between sexes. This 

likely reflects peripheral excursions by females in search of nesting sites 

(Naveda-Rodríguez et al., 2018; Ponce de Leão et al., 2019) without substantially altering their 

central habitat, as shown here. 

A longitudinal gradient was also evident: the smallest areas occurred downstream and the 

largest upstream across all estimators, as confirmed by GLM results. Minimal downstream 

values appear linked to the Tabuleiro do Embaubal Wildlife Refuge, the Amazon‘s largest 

chelonian nesting ground, where legal protection ensures abundant nesting beaches, perennial 

food resources, and low human disturbance. In such settings, turtles can concentrate their 

activities in small spatial bands because essential resources are available within a restricted 

radius, obviating long movements. This mechanism has been reported 

for P. unifilis and P. expansa at the refuge and elsewhere in the Amazon, where dense nesting 

and community management limit the need for extensive travel (WWF, 2013; Oliveira, 2018). 

Comparable patterns occur in both marine and freshwater turtles: individuals foraging inside 

food-rich marine reserves show home ranges < 1 km² (Baumbach et al., 2019), while 

adult Chelonia mydas in productive bays travel only a few square kilometers 

(Seminoff et al., 2002). Global meta-analyses confirm that high resource availability and low 

disturbance are among the main predictors of reduced home-range size in turtles 

(Slavenko et al., 2016). Effective protection lowers hunting risk and vessel traffic, explaining the 

minimal values downstream compared with mid- and upstream sectors, where Belo Monte‘s 

altered hydrodynamics and fewer beaches may necessitate larger movements. 

Satellite imagery shows that the Volta Grande do Xingu (mid-sector) experienced major 

hydrologic reconfiguration and island loss after Belo Monte began operating, producing a more 

fragmented mosaic of aquatic and floodplain habitats (Kalacska et al., 2020). Hydrological 

studies further demonstrate that the dam altered the flood pulse, changing lateral connectivity 

and resource availability in this reach (Timpe & Kaplan, 2017), while cumulative-impact 
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analyses reveal permanent flow reduction downstream and changes in sand-bar structure 

(Fearnside, 2006).  

Rapids and waterfalls characteristic of the intermediate sector also act as partial barriers 

to P. unifilis movement, increasing longitudinal resistance (Agostini et al., 2024). Although most 

literature on intact Amazonian rivers reports larger home ranges during floods, our dataset shows 

the opposite pattern in the regulated mid-Xingu larger areas in the dry season. Likely drivers 

include: (i) the dampened flood pulse under Belo Monte, which limits lateral connectivity during 

floods (Timpe & Kaplan, 2017; Fearnside, 2016); (ii) the ―dispersed-scarcity hypothesis,‖ 

whereby receding waters isolate floodplain lakes and patchily distribute food and refuges, 

forcing longer travel (Junk et al., 1989; Fachín-Terán et al., 2006); (iii) reproductive demands 

leading females to make long longitudinal trips to nesting beaches at peak low water 

(Naveda-Rodríguez et al., 2018; Simoncini et al., 2022); (iv) individual heterogeneity typical of 

short-distance facultative migrants, with some turtles ranging widely in the dry season 

(Ponce de Leão et al., 2019); and (v) measurement geometry: during floods many moves occur 

within contiguous flooded forests, compressing two-dimensional outlines, whereas dry-season 

moves along the main channel artificially inflate MCP, KDE, and AKDE estimates—a bias 

shown for Amazonian turtles in the Juruá River (Hinderaker, 2021), for which 

Ouellette & Cardille‘s (2011) CLHR and Row & Blouin-Demers (2006) simulations highlight 

MCP/KDE overestimation in linear habitats. 

Intrapopulation variation indicates strong behavioral plasticity: sex, body size, and 

reproductive status modulate site fidelity. Podocnemidids span a continuum from residents to 

long-distance migrants. For instance, 85 % of P. lewyana in the Magdalena River maintain 

< 1 km linear ranges, whereas some reproductive females travel 3–5 km 

(Alzate-Estrada et al., 2020). 

Female P. sextuberculata in Mamirauá use 16–45 km linear ranges and migrate ~18 km 

between lakes and nesting beaches, whereas males remain almost sedentary 

(Fachín-Terán et al., 2006). P. expansa shows the extreme, with movements of hundreds of 
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kilometers that require basin-scale corridors (Forero-Medina et al., 2019). Even P. unifilis in the 

Trombetas River display ranges from 0.6 to 215 ha, indicating a few individuals expand far 

beyond the population mean (Ponce de Leão et al., 2019). In this study, no permanent nomadism 

was observed, but occasional exploratory trips imply that, under favorable conditions (e.g., 

exceptional floods or localized scarcity), turtles may switch from resident to exploratory 

behavior, underscoring the need for management that safeguards both habitat cores and potential 

movement routes. 

Hydrological fragmentation caused by dams drastically affects aquatic species‘ spatial 

behavior. In the Volta Grande, an ~80 % flow reduction after Belo Monte (Higgins, 2021) 

shrank floodable area. Tracked turtles now face much less habitat during floods, restricting 

movements to remnant channels and isolated pools. Our data suggest smaller home ranges and 

reduced seasonal movement amplitude compared with natural rivers (Ribeiro et al., unpublished; 

Fachín-Terán et al., 2006). In intact systems, females of P. sextuberculata travelled 16–45 km 

between feeding lakes and nesting beaches (Fachín-Terán et al., 2006), and P. unifilis in the 

Napo River ranged up to 30 km annually (Naveda-Rodríguez et al., 2018). No such distances 

occurred under the regulated Xingu, implying lateral-connectivity loss limits typical migrations.  

Dam-imposed isolation likely keeps turtles in suboptimal habitats for long periods, 

increasing resource competition and hindering access to traditional foraging and nesting areas 

(Barcenas-García et al., 2022a, b). Similar alterations threaten Amazonian aquatic fauna broadly 

(Fearnside, 2016), and turtles in particular (Norris et al., 2021; Barcenas-García et al., 2022a, b). 

In short, Xingu turtles still display flood-pulse-modulated patterns, but fragmentation has likely 

dampened this dynamic, reducing natural behavioral plasticity. Such flood-regime changes 

already cause lateral-connectivity loss, population isolation, and turtle declines elsewhere in the 

Amazon (Correa et al., 2022); global reviews confirm dams disrupt migration routes, 

nesting-beach availability, and critical habitats, suppressing flexible responses to seasonal pulses 

(Barcenas-García et al., 2022). Reservoir-induced connectivity loss has also altered age structure 

and reduced fecundity in several Podocnemis species (Alho et al., 2011). 
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Finally, interpretation of spatial patterns must consider analytical tools. Different 

home-range estimators can yield distinct results from the same dataset (Börger et al., 2006; 

Boyle et al., 2009; Noonan et al., 2019). MCP overestimates area by enclosing unused spaces 

and is especially problematic in linear landscapes—its convex geometry fills meanders and side 

channels, creating polygons that misrepresent accessible surface. Simulations show MCP error 

can exceed 200 % in narrow corridors (Row & Blouin-Demers, 2006). The CLHR 

(Ouellette & Cardille, 2011) and Amazonian studies confirm MCP not only inflates values but 

can erase critical hydrological compartments (Hinderaker, 2021). KDE 95 % better delineated 

intensive vs. occasional-use zones (Worton, 1989) but assumes independence; autocorrelation 

leads to oversmoothing, and in linear rivers it projects use onto adjacent land 

(Swihart & Slade, 1985; Silva et al., 2022). KDE can overestimate area by 50–300 % in such 

settings (Row & Blouin-Demers, 2006; Ouellette & Cardille, 2011). LoCoH mitigates these 

issues by restricting hulls to point neighborhoods, respecting riverbanks 

(Getz & Wilmers, 2004), but may underestimate area if sampling is sparse (Getz et al., 2007). 

dBBMM incorporates time, revealing movement corridors and separating travel from residency 

(Horne et al., 2007; Mascarenhas-Junior et al., 2023, 2024), though it needs high fix rates 

(Kranstauber et al., 2012). AKDE offers statistically robust areas and confidence intervals by 

modeling autocorrelation (Fleming et al., 2015; Calabrese et al., 2016); ignoring autocorrelation 

underestimates area, and AKDE averages twice the size of traditional estimators 

(Noonan et al., 2019; Silva et al., 2021). 

Given these trade-offs, we recommend a multimodel approach: AKDE for total area, 

dBBMM for functional connectivity, and LoCoH/KDE for activity centers, providing an 

integrated, ecologically realistic depiction of P. unifilis movement. Satellite-tracking effort also 

matters. ARGOS duty-cycle settings balance fix frequency and battery life; low-power cycles 

extend tracking but reduce daily fixes, while intensive schedules shorten tag life 

(Douglas et al., 2012; Dubinin et al., 2010). ARGOS location quality varies by class; median 

errors range from ~150 m (class 1) to > 1 km (classes A–Z) (McClintock et al., 2015; 
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Vincent et al., 2002). Filtering can remove up to 90 % of bad fixes but reduces usable effort 

(Douglas et al., 2012). Some tags failed before spanning a full seasonal cycle—common in 

humid tropics (Witt et al., 2010) so individuals with < 60 high-quality fixes may have 

underestimated ranges. 

Overall, P. unifilis in the mid-Xingu relies on compact home ranges, micro-habitat 

fidelity, and seasonal connectivity provided by the flood pulse to reach nesting beaches, 

floodplain lakes, and back-water channels. Conservation priorities include (1) re-establishing 

partial hydrological connectivity via ecological flows maintaining ≥ 80 % natural discharge 

during floods (Richter et al., 2012); (2) protecting key habitat cores and corridors identified by 

AKDE/LoCoH and dBBMM (~15 km² in upstream and mid-sectors; Norris et al., 2018); and (3) 

fostering community co-management to protect beaches and regulate boat traffic 

(Campos-Silva & Peres, 2016; Pezzuti et al., 2010). Long-term telemetry, rigorous ARGOS 

filtering (Douglas et al., 2012), and autocorrelated estimators (Fleming et al., 2015) should guide 

adaptive management and dam-operation rules. Future hydropower licensing must internalize 

connectivity costs, provide functional passages, compensate for beach loss, and mandate 

post-dam monitoring. Isolated reserves are insufficient; a network protecting short migration 

routes, foraging hubs, and nesting beaches aligned with Brazil‘s national turtle action plan 

(ICMBio) is required. Under climate change, more severe hydrological extremes will combine 

with fragmentation to heighten collapse risk. Functional river corridors, genomic monitoring for 

bottlenecks, and public-awareness campaigns about the species‘ ecological and cultural value are 

essential parts of a robust conservation strategy for P. unifilis in the Xingu and other Amazonian 

basins under hydropower pressure. 

 

CONCLUSION 

 

This analysis of the spatial ecology of the yellow-spotted river turtle (Podocnemis 

unifilis) in the Xingu River, encompassing different hydrological segments, seasons, and sex 
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classes, provides a comprehensive and integrated overview of how the species responds to a 

fragmented and regulated riverine ecosystem. P. unifilis demonstrated a remarkable capacity for 

behavioral adjustment, maintaining seasonal movement patterns and fidelity to key habitats even 

under altered conditions, albeit within the constraints imposed by water availability and resource 

distribution. The striking differences among the upstream reservoir, the reduced-flow Volta 

Grande, and the regulated downstream section eloquently illustrate the critical importance of a 

natural hydrological regime in sustaining the ecological processes that support these turtles life 

cycles.  

Ecologically, we found that P. unifilis retains typical traits of Amazonian turtles, such as 

moderate reproductive movements in females, high philopatry, and a preference for lentic 

environments, but also experiences severe limitations when its habitat is transformed, reducing 

both home range size and migration opportunities. Methodologically, we emphasize the value of 

applying modern analytical tools and recognizing the limitations of Argos telemetry data to 

ensure more accurate and statistically robust interpretations. Finally, from a conservation 

perspective, our findings support concrete actions aimed at mitigating the impacts of the Belo 

Monte Hydroelectric Dam and offer recommendations applicable to other hydropower projects: 

the need to preserve or simulate natural flood pulses, protect critical habitats (such as nesting 

beaches and dry-season refuges), and manage each isolated subpopulation with targeted 

measures. In the face of rapid environmental change in the Amazon, studies like this, grounded 

in robust empirical data and informed by current ecological understanding, are essential to 

support effective conservation strategies. 
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CONSIDERAÇÕES FINAIS 

Esta tese fornece uma grande contribuição para o entendimento da ecologia espacial de 

quelônios de água doce, com foco no tracajá (Podocnemis unifilis), em um dos rios mais 

ambientalmente modificados da Amazônia brasileira, o rio Xingu. A abordagem escalonada, que 

articula uma revisão global, uma investigação empírica local e uma análise detalhada de área de 

vida sob diferentes métodos analíticos, permitiu explorar tanto os padrões gerais quanto as 

respostas contextuais da espécie frente a diferentes níveis de impacto antrópico. 

No Capítulo 1, a revisão sistemática revelou um aumento expressivo nos estudos sobre 

movimentação de quelônios ao longo das últimas quatro décadas, mas também evidenciou 

lacunas importantes na representatividade taxonômica e geográfica, especialmente nas regiões 

tropicais. Embora radiotelemetria continue sendo a técnica predominante, a adoção de métodos 

mais sofisticados tem crescido, embora ainda limitada para espécies ameaçadas ou de interesse 

comercial. A análise destacou ainda a importância crescente da telemetria como ferramenta 

indispensável para subsidiar decisões de manejo e conservação. 
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O Capítulo 2 investigou o comportamento espacial de P. unifilis ao longo de três setores 

longitudinais do médio Xingu, revelando uma expressiva variação sazonal no uso do espaço. 

Durante a estação seca, os indivíduos restringiram seus deslocamentos a áreas permanentes, com 

forte fidelidade espacial; já no período de cheias, expandiram sua área de uso, explorando 

habitats temporariamente acessíveis. Apesar dessa plasticidade, não se observaram orientações 

direcionais consistentes, nem diferenças estatísticas marcantes entre sexos ou setores. Esses 

padrões indicam que a espécie adota uma estratégia de movimentação oportunística, fortemente 

mediada pela conectividade hidrológica local e pelas condições do microhabitat, mais do que por 

deslocamentos orientados de longa distância. 

No Capítulo 3, as estimativas de área de vida utilizando cinco métodos (MCP, KDE, 

AKDE, LoCoH e dBBMM) confirmaram ampla variabilidade individual, mas evidenciaram 

padrões de movimento restritos e uma notável permanência espacial ao longo do tempo. As 

diferenças observadas entre os setores, com maiores áreas de vida no reservatório a montante e 

menores na Volta Grande (intermediário) sugerem que a fragmentação afeta de maneira 

significativa a amplitude de movimentação da espécie. A limitação espacial observada na Volta 

Grande, em particular, reforça a vulnerabilidade de P. unifilis em ambientes fluviais altamente 

regulados, onde a heterogeneidade estrutural e a conectividade sazonal foram drasticamente 

reduzidas. 

Em conjunto, os três capítulos convergem para uma conclusão crítica: embora P. unifilis 

demonstre resiliência ecológica por meio de certa plasticidade comportamental, sua persistência 

depende diretamente da manutenção de habitats funcionais, da integridade dos ciclos 

hidrológicos naturais e da conectividade longitudinal e lateral do sistema fluvial. A espécie 

utiliza predominantemente áreas restritas e demonstra fidelidade espacial acentuada, o que a 

torna sensível a alterações no regime hidrossedimentológico e à perda de habitats críticos como 

praias de desova. 

Dessa forma, a presente tese reforça a urgência da incorporação de dados de 

movimentação e uso do espaço em estratégias de manejo adaptativo e licenciamento ambiental 
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de empreendimentos hidrelétricos. Sugere-se, ainda, a implementação de um Manejo Espacial 

Integrado (MEI) para o rio Xingu, que contemple: (i) a proteção de núcleos de uso recorrente, 

(ii) a simulação de pulsos de cheia para manter a conectividade sazonal, e (iii) o reconhecimento 

legal e ecológico de áreas críticas para a reprodução e sobrevivência de quelônios. Ao unir 

síntese global, evidência local e aplicação prática, esta tese oferece fundamentos científicos 

sólidos para ações de conservação mais eficazes de P. unifilis e, por extensão, para a manutenção 

da integridade ecológica dos grandes rios amazônicos. 

 

 

 

 

 


