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FROM GLOBAL FRESHWATER TURTLE TELEMETRY TO LOCAL
CONSERVATION: THE SPATIAL ECOLOGY OF PODOCNEMIS UNIFILIS IN THE

MIDDLE XINGU RIVER

ABSTRACT

Freshwater turtles are among the most threatened vertebrates globally, and understanding their
spatial ecology is essential for conservation, especially in river systems affected by hydrological
alteration. In this context, the objectives of this Thesis were to: (i) identify global trends, gaps,
and methodological approaches in telemetry-based studies of freshwater turtles; (ii) investigate
seasonal movement patterns, directional orientation, and space use of Podocnemis unifilis in a
dam-regulated Amazonian river; and (iii) estimate home range areas using multiple methods to
evaluate spatial responses to altered hydrology in the Xingu River basin. In Chapter I, we have
conducted a systematic review of telemetry studies on freshwater turtles worldwide, analyzing
104 articles published from 1980 to 2022 using the PRISMA protocol. Our findings showed an
increase in studies in recent decades, with radiotelemetry being the most widely used method
and home range estimation the most common objective. Despite progress, most studies were
conducted in anthropogenic landscapes and only a small proportion focused on threatened
species, highlighting critical research gaps in tropical regions and conservation priorities. In
Chapter 11, we have used satellite telemetry to monitor 32 adult P. unifilis in three longitudinal
sectors of the middle Xingu River between 2017 and 2022. We have assessed movement metrics,
azimuthal orientation, and habitat use across hydrological seasons. Results revealed that females
traveled longer distances than males, although no significant sex or seasonal differences were
detected. Directional analyses did not show alignment toward nesting beaches. However, spatial
behavior varied seasonally, with localized movements and site fidelity during low-water periods

and broader space use during floods, especially in upstream and midstream areas. These findings



suggest that hydrological connectivity drives spatial dispersal. In Chapter I1l, we have estimated
home range sizes using five spatial methods (MCP, KDE, AKDE, LoCoH, dBBMM). Home
range size varied greatly among individuals but showed no consistent effect of sex or season.
However, turtles in the upstream reservoir had larger home ranges, while those in the midstream
sector (Volta Grande) showed restricted movements. These results highlight the species spatial

plasticity but also its vulnerability to habitat fragmentation caused by flow regulation.

Keywords: freshwater turtles, Podocnemis unifilis, movement ecology, satellite telemetry, home

range, Amazon, dam impacts.



RESUMO

Os queldnios de &gua doce estdo entre os vertebrados mais ameacados globalmente, e
compreender sua ecologia espacial € essencial para a conservacdo, especialmente em sistemas
fluviais impactados por alteracGes hidrologicas. Neste contexto, 0s objetivos desta Tese foram: (i)
identificar tendéncias globais, lacunas e abordagens metodoldgicas em estudos com telemetria
aplicados a queldnios de agua doce; (ii) investigar os padrdes sazonais de movimentacao,
orientacdo direcional e uso do espaco de Podocnemis unifilis em um rio amazonico regulado por
barragem; e (iii) estimar areas de vida utilizando maltiplos métodos para avaliar as respostas
espaciais da espécie frente as alteracdes hidroldgicas na bacia do rio Xingu. No Capitulo I,
realizamos uma revisdo sistematica de estudos com telemetria em queldnios de &gua doce
publicados entre 1980 e 2022, seguindo o protocolo PRISMA. Os resultados revelaram um
aumento no namero de estudos nas ultimas décadas, com predominancia da radiotelemetria e foco
na estimativa de area de vida. Apesar dos avangos, a maioria dos estudos foi conduzida em
paisagens antropizadas e apenas uma pequena proporcdao focou em espécies ameacadas,
evidenciando lacunas criticas em regides tropicais e prioridades conservacionistas. No Capitulo II,
utilizamos telemetria via satélite para monitorar 32 individuos adultos de P. unifilis em trés setores
longitudinais do médio rio Xingu entre 2017 e 2022. Analisamos métricas de deslocamento,
orientacdo azimutal e uso do habitat ao longo das estacGes hidroldgicas. As fémeas percorreram
distancias maiores que os machos, embora sem diferencas estatisticas significativas. As analises
direcionais ndo revelaram orientacdio em direcdo as praias de desova. No entanto, o
comportamento espacial variou sazonalmente, com movimentos localizados e fidelidade espacial
na seca, e expansdo do uso do espaco nas cheias, ainda que de maneira ndo significativa,
especialmente nos setores montante e intermediario, sugerindo que a conectividade hidrologica é
um fator determinante para a dispersdo espacial. No Capitulo 111, estimamos as areas de vida por
cinco metodos espaciais (MCP, KDE, AKDE, LoCoH, dBBMM). As areas variaram amplamente
entre os individuos, sem efeito significativo de sexo ou estacdo. Contudo, os individuos no

reservatorio montante apresentaram maiores areas de vida, enquanto aqueles na Volta Grande



mostraram movimentacao restrita. Esses resultados evidenciam a plasticidade espacial da espécie,

mas também sua vulnerabilidade a fragmentacéo do habitat imposta pela regulacéo do fluxo.

Palavras-chave: quelbnios de 4gua doce, Podocnemis unifilis, ecologia de movimento, telemetria

via satélite, area de vida, Amazonia, impactos de barragens
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INTRODUCAO GERAL

A conservacdo de queldnios de &dgua doce enfrenta desafios globais, dado que muitas
espécies sofrem declinios populacionais acentuados e estdo ameacgadas pela caca, perda de
habitat e outras pressdes antropicas (Tortoise, & Freshwater Turtle Specialist Group,
1989, Buhlmann et al., 2008; Stanford et al., 2020; Barcenas-Garcia et al., 2022). Compreender
a ecologia espacial desses animais, isto €, como se movimentam, utilizam habitats e distribuem
suas atividades, ¢ fundamental para embasar estratégias de manejo eficazes e direcionados
(Allen et al., 2016; Ogbun et al., 2017; Fletcher & Fortin, 2018). Nesse contexto, a telemetria se
apresenta como uma ferramenta valiosa, permitindo o acompanhamento remoto dos
deslocamentos de animais em tempo real ou quase real (Mayo-Wells, 1963; Pride & Schift,
1992; Kimley, 2013; Cooke et al., 2013; Hussey et al., 2015; Lennox et al., 2017). Em relacéo a
aplicacdo da telemetria para estudos com queldnios de dgua doce, observa-se uma tendéncia de
crescimento significativo, como evidenciado em Ribeiro et al., 2024. No entanto, evidencia-se
também a necessidade de expandir os estudos de movimentacdo, especialmente para espécies
sob maior risco.

Na Amazbdnia, um dos grupos de queldnios de agua doce de destaque é a familia
Podocnemididae, que inclui grandes espécies fluviais (Gaffney et al., 2011). Podocnemis unifilis,
conhecida como tracaja, é uma espécie de médio porte amplamente distribuida na América do
Sul ocorrendo no Brasil e paises vizinhos (Vogt, 2008; Ferrara et al., 2017). Embora amplamente
distribuido, o tracaja tem sofrido declinios populacionais severos em diversas regides. Entre as
principais ameacas estdo a sobre-exploracdo para consumo (carne e ovos) e comercio ilegal
(Alho, 1985; Rebello and Pezzutti, 2000; Fachin-Teran et al., 2004; Pezzutti et al., 2010), a
perda e degradacdo de habitats (Conway-Gomez, 2007), inclusive pela construcdo de
hidrelétricas (Barcenas-Garcia et al., 2022a, 2022b), poluicdo (como contaminagdo por
mercurio; Souza-Araujo et al., 2015; Pignati et al., 2018) e mudancgas climaticas (Da Silva et al.,

2025). Devido a sua longevidade e maturacdo tardia, P. unifilis é particularmente vulneravel a



15

essas pressdes, sendo classificada como espécie Vulneravel nas listas de conservagdo nacionais e
internacionais (MMA, 2022; IUCN, 2024).

Apesar de sua importancia, o conhecimento cientifico sobre a ecologia espacial do tracaja
ainda é incipiente. Historicamente, poucos estudos buscaram avaliar os padrées de movimento
de espécies de Podocnemididae, e a maioria concentrou-se na tartaruga-da-amazoénia
(Podocnemis expansa) usando radiotransmissores VHF somente mais recentemente, quando
tecnologias como rastreamento por satélite comecaram a ser aplicadas a quelénios amazonicos
(Guilhon et al., 2011). No caso especifico de P. unifilis, o conhecimento sobre seus padrdes de
movimentacdo permanece limitado a poucos estudos (e.g. Naveda-Rodrigues et al., 2018; Ponce
de Ledo et al., 2019; Hilderaker, 2021). Sabe-se que no regime natural de rios amazoénicos, as
variacBes sazonais do nivel da agua exercem forte influéncia no comportamento espacial desses
queldnios (Naveda-Rodrigues et al., 2018; Ponce de Ledo et al., 2019). Entretanto, ndo existiam
estudos especificos sobre os movimentos de P. unifilis no rio Xingu até recentemente. Essa
lacuna € preocupante, pois o rio Xingu representa um habitat com alta biodiversidade e vem
passando por réapidas transformac6es ambientais nos Gltimos anos (Fearnside, 2015).

A presente pesquisa buscou integrar o conhecimento global sobre telemetria em
quelbnios de agua doce com uma aplica¢do local voltada a conservacdo do tracajd no médio
Xingu. Para isso, esta Tese foi estruturada em trés capitulos que se complementam. No Capitulo
1, realizamos uma revisao sistematica global sobre o uso de telemetria em quelénios de agua
doce, mapeando as tendéncias, principais abordagens e lacunas nesse campo. Esse capitulo
preenche a necessidade de uma sintese abrangente da literatura, revelando, por exemplo, quais
regides e especies foram mais estudadas e quais permanecem negligenciadas. No Capitulo 2,
nos concentramos na ecologia de movimento do tracaja no médio rio Xingu, por meio de um
estudo de telemetria de campo. Neste capitulo investigamos as distancias percorridas, a
direcionalidade dos deslocamentos e diferencas sazonais e entre sexos no padrdo de
movimentacdo da espécie. Essa investigacdo local atende a lacuna de informacéo sobre como P.
unifilis se comporta espacialmente em um trecho especifico da Amazénia (até entdo inédito na

literatura). No Capitulo 3, por fim, realizamos uma analise detalhada da &rea de vida (home
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range) de P. unifilis no médio Xingu, utilizando dados de telemetria por satélite em um contexto
ambiental fragmentado.

Em conjunto, os trés capitulos fornecem uma visdo escalonada do global ao local. A
revisdo global identificou lacunas e reforcou a importancia da telemetria para a conservacgao de
queldnios, justificando a realizagdo de estudos locais em espécies e areas pouco exploradas. O
estudo no Xingu gerou dados ecoldgicos inéditos sobre 0s movimentos sazonais do tracaja,
enquanto a analise de &rea de vida ofereceu insights aplicados para 0 manejo da espécie em rios
sob impacto de barragens. Ao integrar esses resultados, esta Tese contribui para preencher as
lacunas de conhecimento sobre a ecologia espacial do P. unifilis, fornecendo bases cientificas
para acgOes de conservacdo mais eficazes, tanto no ambito regional (bacia do Xingu) quanto em

um contexto amazonico mais amplo.
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CAPITULO 1

TELEMETRY IN MOVEMENT ECOLOGY OF AQUATIC AND SEMI-AQUATIC

TURTLES IN WORLD FRESHWATER ECOREGIONS: A SYSTEMATIC REVIEW

Artigo publicado na Ethology, Ecology & Evolution



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

21

Telemetry in movement ecology of aquatic and semi-aquatic turtles in world

freshwater ecoregions: a systematic review

Maurivan V. Ribeiro®*", Roberto L. da Silva*, Amanda dos S. Cruz*, Adriana Malvasio®,

Mirco Solé®, Erik Allan P. dos Santos® and Alexandre Schiavetti?

'Programa de Pés-graduacdo em Ecologia e Conservagdo da Biodiversidade.
Universidade Estadual de Santa Cruz - UESC. Rod. Jorge Amado, km 16, Bairro
Salobrinho, 45662-900, Ilhéus, Bahia, Brasil. E-mail: maurivan.bio@gmail.com

2 Laboratério de Etnoconservacdo e Areas Protegidas, Departamento de Ciéncias
Agrérias e Ambientais, Universidade Estadual de Santa Cruz, Rod. Jorge Amado, km 16,
Bairro Salobrinho, 45662-900, Ilhéus, Bahia, Brasil. Email: aleschi@uesc.br
$Laboratério de Herpetologia Tropical, Universidade Estadual de Santa Cruz — UESC.
Rod. Jorge Amado, km 16, Bairro Salobrinho, 45662-900, Ilhéus, Bahia, Brasil. Email:
msole@uesc.br

* Norte Energia S.A., Edificio General Alencastro (Q SEPS 702/902, Andar 3, Bloco B,
Conjunto B, Asa Sul, 70390-025, Brasilia-DF, Brasil. Email:
robertosilva@norteenergiasa.com.br; amandacruz@norteenergiasa.com.br

> Laboratério de Ecologia e Zoologia, Universidade Federal do Tocantins
(LABECZ/UFT) Quadra 109 Norte, ALCNO 14, Avenida NS 15 s/n., 77001-090,
Palmas/TO, Brazil. Email: malvasio@mail.uft.edu.br

® Instituto Chico Mendes de Conservagdo da Biodiversidade (ICMBio), Centro Nacional

de Pesquisa e Conservacéo de Tartarugas Marinhas e da Biodiversidade Marinha do

Leste, 29.050-335, Vitoria, Espirito Santo, Brazil. Email: erik.santos@icmbio.gov.br

*Author correspondence: Maurivan Vaz Ribeiro, E-mail: maurivan.bio@gmail.com
21



27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

22

The study focused on advancing techniques for understanding freshwater turtle movement,
aiding decision-making and management strategies against various threats. The systematic
review, using the PRISMA protocol, identified 104 articles from 1980 to 2022, with a
notable recent increase. Radiotelemetry was the predominant technique in tracking turtle
movement, and the evaluation of species’ home range was the most recurrent study type.
The research covered 33 freshwater ecoregions, with a concentration in anthropized areas.
Notably, only 16.2% of all endangered freshwater turtle species and 11.4% threatened by
international trade were studied. Despite this, there's a growing trend toward conservation
efforts. The study underscores the importance of telemetry as a vital tool for understanding

and conserving freshwater turtle ecology, revealing trends and gaps in research.

ABSTRACT

The improvement of techniques and analyses to understand the movement of freshwater
turtles has helped managers in decision-making and the establishment of management
strategies for these animals, which suffer numerous threats. We analyzed the available
scientific literature on the use of telemetry in the study of the movement ecology of
freshwater turtles, seeking to assess the most commonly used approaches. To this end, we
carried out a systematic review of articles published until December 2022 using the
PRISMA protocol. We found 104 articles published between 1980 and 2022, with a clear
increase in the number of publications in later years. We found publications in 40 journals
with 295 authors, 150 institutions and 261 keywords. Three countries had major
contributions, and we found studies with 50 species, the most recurrent being Emydoidea

blandingii and Glyptemys insculpta. The most commonly used technique to study turtle
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movement was radiotelemetry. The use of Minimium Convex Polygon - MCP and Kernel
Density Estimation - KDE was present in 56% of the studies in the last 10 years, and the
evaluation of the home range of the species was the most recurrent type of study. The
studies covered 33 freshwater ecoregions, and although most studies were carried out in
anthropized areas, covering only 16.2% of all endangered freshwater turtle species and
11.4% of all threatened by international trade, the conservation approach has been
increasingly recurrent. Our results highlight trends and gaps in the study of the ecology of
freshwater turtle movements and highlight the importance of telemetry as an essential tool

for species conservation.

KEY WORDS: scienciometry, chelonians, movements, home range, tracking.
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Telemetry in Movement Ecology of Turtles

INTRODUCTION

Animals exhibit movement patterns in search of places with greater availability
of resources (Pough et al. 2001), and these resources can be diverse: shelter, food,
sexual partners, thermoregulation and reproduction sites, as in the case of turtles
(Fachin-Téran et al. 1995). Typically, for freshwater turtles, movement patterns are
mainly influenced by annual variation in water availability (Prance 1979; Junk et al.
1989; Ossa-Velasquez and Vogt, 2011) but can also be associated with habitat changes,
such as precipitation, water temperature, water level, or chemical pollution (lverson,
1992; Fachin-Teréan et al. 2006).

Several approaches have been used to study the spatial distribution and habitat
use of freshwater turtles, the most common being those involving capture-recapture
(Plummer 1977; Obbard and Brooks, 1981; Liuzzo et al. 2021), thread-bobbins (Carter
et al. 2000; Kaye et al. 2005; Famelli et al. 2016) and, more recently, acoustic tracking
(Micheli-Campbell et al. 2017) and radiotelemetry (Roe and Georges 2008), although
each has some limitations.

The study of the movement, habitat use and home range of freshwater turtles is
still incipient, and most of these studies were carried out in a certain period of the year
(Magnusson et al. 1997; Fachin-Teran et al. 2006; Ponce de Ledo 2019).
Radiotelemetry is one of the main tools used to study the movement patterns of animals
(White and Garrott 1990; Chow-Fraser 2014), but generally, this method is quite labor
intensive, as it requires the presence of the researcher for all tracking efforts (Chow-

Fraser 2014), which can make it impossible to collect data during all periods of the year
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(Rowe and Moll 1991; Dowling et al. 2010; Luschi and Casale 2014; Chow-Fraser
2014; Cochrane et al. 2019). Although this tracking frequency is necessary to generate
enough data to accurately map an animal's home range (Swihart and Slade 1985; Kie et
al. 2010), the presence of the researcher can affect the animal's natural movements;
therefore, radio tracking is not ideal for determining habitats that are rarely used or only
used for short periods (e.g., travel corridors).

In the last 20 years, satellite telemetry has led to progress in the knowledge of
movement ecology (Tomkiewicz et al. 2010; Chow-Fraser 2014; Cochrane et al. 2019),
as this technique allows the reconstruction of the real routes followed by marked
individuals (Godley et al. 2008; Guilhon et al. 2011), allowing their follow-up
throughout the year, with no need to go to the field (except to initially apply
transmitters, change devices or batteries). Combined with traditional radio tracking,
researchers were able to increase the frequency and spatial resolution of the collected
data (Schwartz and Arthur 1999; Cagnacci 2010). While on the one hand, the technique
is considered to be more expensive than others (Cochrane et al. 2019), on the other
hand, it enables obtaining very detailed information about the spatial behavior of
individuals belonging to different life stages and about the main characteristics of the
movements performed by individuals in their natural environment (Luschi et al, 2014).
Along with technological advances, the last decade has also seen conceptual and
analytical advances to study species movement with the use of different techniques and
methods (Nathan et al. 2008).

Freshwater turtles are widely distributed in rivers and lakes around the world
(Campbell et al. 2013) and represent one of the most threatened groups of vertebrates
on the planet, with over 300 known species (Bour 2008; Uetz 2022). Approximately

60% of them fall under some degree of threat, and global efforts are needed to prevent
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the extinction of these charismatic animals (Turtle Conservation Fund 2007; IUCN
2022). Freshwater turtles have suffered a serious decline in recent years, and some
species may no longer exist in the next century (Buhlmann et al. 2009; Hoffmann et al.
2010) due to numerous threats, such as habitat loss, the introduction of invasive
predators (Rhodin et al. 2018), exploitation for food, traditional medicine and
unregulated trade (Smith, 1979; Gibbons et al. 2000; Hernandez and Spin 2003; Turtle
Conservation Fund 2007; CITES 2022; IUCN 2022), although there is a historical and
social relationship with the consumption of some species (Rébello and Pezzutti 2000;
Carvalho et al. 2021; Da Silva et al. 2022).

Movement patterns and range of use are not yet known for many species of
freshwater turtles. It is essential to know the life history of the species and investigate
how individuals move (Gibbons 1990; Roe et al. 2008, 2009; Godley et al. 2003) and to
align technological advances in the study of movement with the objective of defining
appropriate conservation measures for species of conservation interest, especially those
listed on the Red List of Threatened Species of the International Union for the
Conservation of Nature (IUCN) (Luschi and Casale,2014; Allen and Singh 2016; IUCN
2022). In this work, we synthesized studies that evaluated the use of telemetry in
freshwater turtles around the world. Our objective was to identify research trends and
gaps in current knowledge and discuss the importance of using telemetry in the
conservation of freshwater turtles. We hope to observe an evolution in the use of
techniques, equipment, and analyses employed to comprehend the movement patterns of
freshwater turtles. Additionally, we aim to understand how the application of telemetry
can significantly contribute to global conservation efforts for turtles, particularly in

freshwater ecoregions.
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METHODS

Literature Review

We used the step-by-step approach proposed by Khan et al. (2003) and Pullin et
al. (2006) for a systematic review. Additionally, we used the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses Standard Method (PRISMA; Moher et al.
2015). This method has been commonly used in systematic review studies on various
subjects (Velamazan et al. 2020; Calzetta et al. 2020; Tidman et al. 2021; O'Dea et al.
2021; Mathwin et al. 2021) and consists of a robust protocol with 27 items that must be
verified so that the risk of bias is minimized (Moher et al. 2015). Literature sources
were accessed through the SCOPUS (www.scopus.com), Web of Science (WoS) and
Google Scholar databases. These three databases were selected to allow greater
coverage of the results (Fingerman 2006; Mongeon and Paul-Hus 2016), since results
may vary depending on the database used (Gavel and Iselid 2008; Vieira and Gomes
2009).

We limited the search to articles published in peer-reviewed journals until July
2022, using a series of keywords combined to search for work done on the ecology of
movement in freshwater turtles. For this, the following keywords were searched for in
the databases: ((turtle OR chelonian) AND (freshwater* OR river*) AND (telemetry
OR radiotelemetry OR satellite)) (Table 1). All Scopus and Web of Science results were
considered, and in the case of Google Scholar, only the results of the first 30 pages were
considered (Haddaway et al. 2015; Crane et al. 2021).

For inclusion, they had to meet the following eligibility criteria: 1) related to the
movement of freshwater turtles; 2) aquatic and semiaquatic species only; 3) studies
using an attached telemetry device (e.g., VHF transmitters, GPS transmitters); 4) peer-

reviewed articles; and 5) studies available in full. We also added articles from personal
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libraries that fell within the scope of our study. Duplicates, false positives, and non-
peer-reviewed "gray" literature based on title and abstract or main text if relevance was
not clear in the abstract were removed (Jeffers et al. 2016).

Considering that many times, the same study makes comparisons between
methods and analyzes and seeks to respond to more than one pattern of movement, we
decided to use all this information. In this way, these were also considered in the
descriptive analyses as different studies, but we did not consider them in the statistical
analyses. Behavioral studies were considered as long as they addressed the movement
of individuals using telemetry. Studies that were not directly related to the movement of
individuals, such as essays, theoretical discussions and studies with genetic,

physiological and morphological approaches, were excluded.

Literature analysis

Current species and habitat nomenclature followed Uetz et al. (2022). For each
article, the following information was extracted: I) general characteristics: year of
publication, name of the journal, impact factor, first author and institution, keywords
used, species and study topic; Il) location: country, geographic coordinates and place of
study; 111) movement variables: movement analysis (how the movement was measured),
the method used and V) conservation: threat degree,
inclusion/discussion/recommendations on conservation issues and whether the study
was carried out in a protected or anthropized area. Among the methodological options
related to movement, there are variations dealt with in the literature, such as the kernel
method: fixed kernel method (Rowe et al. 2009), fixed kernel estimates (Forero-Medina
et al. 2011), fixed kernels (Refsnider et al. 20123, b); and the minimum convex polygon

method (MCP) 100% (Ponce De Ledo et al. 2019) and MCP 90% (Wallace et al. 2020).
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We standardized these methods as the kernel method (KM), minimum convex polygon
(MCP), linear home range (LHR), and statistical analysis for those who used only
statistical analysis to determine movement and “others”.

Studies that only sought to describe the movement of species as maximum
distance traveled and average distance were grouped in descriptive analyses. Regarding
the types of study, we also have a diversity, such as terrestrial movements, migration,
Hibernacula, and habitat selection, among others. The studies were standardized and
grouped into seasonal movements, home range, movement patterns and habitat use.
Studies that involved motion ecology using telemetry but did not have specific analyses
to determine motion were grouped under technical analysis and descriptive analysis.
When the same article studied several species and used several techniques and analyses,
the same article was included several times in the presented study counts.

To query the impact factor, we used the latest JCR Impact Factor 2022 provided
by the Journal Citation Report (JCR). The coordinates taken from the studies were
superimposed on shapefiles, and a map was created using ArcGis® software. When
coordinates were not available in the article, we extracted an approximate coordinate for

the indicated region through Google Earth®.

Data analysis

In addition to the descriptive analyses represented in graphs and tables, we
sought to verify whether the number of publications on the ecology of freshwater turtles'
movement has increased over the years through Spearman correlation analysis (Zar
1999). The same analysis was used to verify whether older studies are more cited and
whether the representativeness of studies and species studied in each family is

correlated to existing species (Barcenas-Garcia et al. 2022). Specifically, for the
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analysis of keyword patterns, a “word cloud” was built using the Wordcloud package
(Fellows et al. 2018). To understand the collaborative relationships between researchers
and institutions, coauthorship networks were built (Barabasi et al. 2002; Tomassini and
Lutti 2007) using VOSviewer— software. To see if there was a relationship between
publication and if conservation was discussed in the articles, a Spearman correlation
was performed. The conservation status of the species was taken from the IUCN (IUCN
2022) and the Convention on International Trade in Endangered Species of Wild Fauna
and Flora — CITES (https://cites.org/eng; CITES 2022). We also sought to identify
whether studies had been carried out in the world's freshwater ecoregions (Abell et al.
2000a, 2000b, 2002, 2008; FEOW 2023). All analyses were performed using R software
(R Core Team 2021), and results with a probability lower than 0.05 (P<0.05) were

considered significant (Zar 1999).

RESULTS

When and what studies have been carried out thus far?.

From 575 unique articles returned from the literature searches (Fig.1), our
exclusion criteria produced a final sample of 104 studies using freshwater turtle
monitoring devices (see Supplementary material). There was a slight increase in the
number of publications from 2006 onwards, with the first study registered in 1980 (Fig.
2A\). Significant differences were also found in the number of publications over the
years (Spearman’s Rs = 0.67, p < 0.001). Despite this, between 1980 and 1990, no
studies were found based on the chosen criteria. Publications from the last ten years

(2013 to July 2022) correspond to 53% of the total publications. The year with the
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highest number of publications was 2019, with 11 published works, followed by 2018,
with seven works.

The 104 articles found were published in a total of 40 journals. Of these
journals, “Chelonian Conservation and Biology” was the most relevant in terms of the
number of publications corresponding to 18.26% of the works, followed by the
“Journal of Herpetology” corresponding to 11.53% and “Copeia” with 10.57% of
publications. The journal with the highest impact factor is “Copeia”, followed by
“Journal of Herpetology” and “Chelonian Conservation and Biology”. Only the
Herpetological review had no impact factor (Table 2).

The average number of citations per document was 35.25, ranging from 0 to 372. The
study with the highest number of citations was the one published by Compton et al.
(2002) in the journal “Ecology” (372 citations). In this work, the authors used radio
transmitters as a tool to model habitat selection within the range of Glyptemys insculpta.
The second study with the highest number of citations was carried out by Burke and
Gibbons (1995) and published in the journal “Conservation Biology” (319 citations),
where telemetry was used to assess the habitat requirements of three species of
freshwater turtles (Kinosternon subrubrum, Pseudemys floridana and Trachemys
scripta). We observed that older studies were more cited (Spearman's Rs = - 0.60, p <
0.001; Fig. 2.). The total number of keywords used by the authors was 270. The two
most frequent keywords were Home range (n = 26) and Turtle (n = 18), followed by

Conservation and Radiotelemetry (n = 11) and Movement (n = 10) (Fig. 3).

Who's tracking what and where?.
Of the 295 different authors that appeared in all 104 articles surveyed, the author

with the highest number of collaborations was Sterrett, S. (total link strength = 11) from
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Monmouth University, based in New Jersey, USA; Smith L. L. (total link strength = 11)
from the Joseph W. Jones Ecological Research Center, based in Georgia, USA and
Georges A. (total link strength = 10) from the University of Canberra, based in
Canberra, Australia. Tornabene, Bramblett and Brown presented a total link strength of
nine, while the other authors presented fewer than eight collaborations. Of the total,
eight authors worked individually, and 35 authors worked with at least one coauthor
(Fig. 4A).

Regarding the institutions, 150 participated in the 104 articles surveyed. The
institutions with the highest number of collaborations were the University of Louisville
(total link strength = 26), the University of Maine (total link strength = 25), the
University of Illinois (total link strength = 18), and the National Research Institute of
the Amazon and Maine Department of Inland Fisheries and Wildlife (total link strength
= 12). The other institutions presented a total of fewer than 10 collaborations. Of the
total, 10 institutions produced the articles individually, and 15 institutions worked in
partnership with only one other institution (Fig. 4B). Regarding the countries with the
greatest relevance in scientific production related to the subject, the United States
represented more than half of the studies (57%), followed by Canada (14%) and Brazil
(6.7%) (Fig. 5).

In total, 50 species have studies related to the use of telemetry to measure
aspects of turtle movement ecology. Of these, the most studied were Emydoidea
blandingii, present in 16 works, and Glyptemys insculpta, present in 15 articles. The
most representative family was Emydidae, with 36% of the species studied, followed by
the family Kinosternidae (16%). The Carettochelydae and Platysternidae family (2%, n
= 1) was the least studied family and the most underrepresented Geoemydidae (Table 3)

in relation to the diversity of existing aquatic turtles (Rhodin et al. 2018; Uetz et al.

32



33

2022) (Table 3). Although there was a weak positive relationship, the number of studies
was not significantly correlated with the number of existing species in each family
(Spearman's R = 0.32, p = 0.32; Fig. 6A). The number of species studied in each family
was also not significantly correlated with the number of species in each family
(Spearman’s Rs = 0.56, p = 0.08; Fig. 6B) and followed a similar pattern to the number

of studies, with most species of Emydidae most frequently studies.

How were the studies done and how were they evaluated?.

Telemetry devices (VHF) were cited in 98 of the analyzed studies of freshwater
turtles, and only nine satellite devices (GPS) were used (Fig. 7A). The first study using
satellite radio (GPS) is quite recent (2011), when this method was used to monitor the
nesting of 10 female Podocnemis expansa in the Trombetas Biological Reserve, Rio
Trombetas, Brazil (Guilhon et al. 2011). The use of statistical analysis, without pairing
it with estimates via MCPs and KDEs, dominated the studies (n = 20). Next, the use of
minimum convex polygons (MCPs) and kernel density estimates analysis (KDE) were
present in more than 56% of the studies in the last 10 years. Studies often include
estimates from both methods and rarely use KDEs without including MCPs. Several
studies (n = 20) used descriptive analyses and did not include KDE and MCP analyses
or statistical analyses (Fig. 7B). Eight studies used the linear home range (LHR)
method, and a minority of studies (n = 2) used 'other' methods without pairing with
estimates via MCPs and KDEs. These methods included the minimum polygon area
method (MAP) to assess the home range of Graptemys flavimaculata and Polly buff to
assess the home range of Chelydra serpentina (Fig. 7B). This method consists of
combining the areas within minimal convex polygons calculated around the aquatic

locations of each individual and was developed for studies with aquatic turtles by
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accurately matching aquatic areas of activity with terrestrial movement paths and
therefore is more biologically and behaviorally effective (Harmenick, 2001; Harmenick
et al. 2020).

The home range of the species was evaluated in 51 studies, followed by
movement patterns evaluated in 28 studies, habitat use in 20 studies, seasonal
movements in 17 studies and linear home range in eight studies. Finally, two studies
sought to compare Techniques Analysis (Sattelite radio and VHF Transmitters) (Fig.

7C).

What are the contributions of studies to the conservation of species?.

Almost half of the species surveyed in articles related to the use of telemetry in
the ecology of freshwater turtle movement are classified as threatened (44%), but they
represent only 16.2% of all endangered freshwater turtle species, while 26% are
categorized as least concern (LC) and near threatened (NT). Only one species
(Podocnemis expansa) is considered Conservation Dependent (CD); that is, the species
is characterized as facing lower risk but needs conservation efforts to avoid becoming a
threatened species (Fig. 8A). Regarding CITES, 42% of the species are part of one of
the annexes (I, Il or Ill) and represent only 11.4% of all freshwater turtle species
threatened by international trade. Regarding the status of the areas where the studies
were carried out, slightly more than half (55%) were carried out in anthropized places,
while the rest (45%) were carried out in protected areas (Fig. 8B).

The discussion on conservation varied greatly in the literature evaluated. In total,
42% of the articles make no reference to conservation issues. Almost half (48%) of the
50 articles published in the last ten years did not mention conservation, and only 10%

(out of 104) dedicated a specific topic to discussing species conservation (e.g.,
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conservation implications, management implications or conservation considerations). In
total, 61 papers (58%) contain mentions related to conservation that included
recommendations from increasing the protected area (Downling et al. 2010), protecting
populations and peripheral areas (Forero-Medina et al. 2011), protecting and recovering
the environment of riverine populations (Chen and Lue 2008; McCoard et al. 2016),
controlling exotic species (Kobayashi et al. 2006), decreasing tourism in occurrence
areas (Galois et al. 2002), protecting nesting and occurrence areas (Tucker et al. 2001;
Compton et al. 2002; Dowling et al. 2010; Freeman et al. 2018) and encouraging
studies in partnership with managers in river systems, particularly in floodplains both
spatially and temporally, since the reproductive success and survival of freshwater
turtles is based on the availability of aquatic and terrestrial habitats throughout the year
(Bodie and Semlitsch 2000). The level of detail of the mentions varies from the need to
protect the environment to more specific and denunciatory statements, as in the case of
the study by Zagorski et al. (2019), who, when advocating a data-driven evidence-based
approach in studies carried out for the construction of a quarry in a place of occurrence
of the species Emydoidea blandingii, were victims of a defamatory attack in their
careers, where the entrepreneur and hired consultants widely disseminated, in writing,
allegations of academic misconduct, conflict of interest and data fabrication. Concern
about conservation in the literature is increasing, and although there is a weak positive
relationship, we did not find a significant relationship between the proportion of articles
that discuss these concerns and the year of publication (Spearman’s Rs = 0.29, p =
0.167; Fig 9).

The telemetry studies follow the richest regions and with the highest endemism
of freshwater turtles (Fig. 10). The vast majority of studies were carried out in the

Nearctic region (73%), followed by the Neotropical (14%), Palaeartic (6.7%),
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Australasian (2.8%), Afrotropic (1.92%) and Indomalayan (0.96%) regions. In total, the
studies covered 33 freshwater ecoregions worldwide (Table 4). The ecoregions with the
most studies were Upper Mississippi (13.46%) and Southern Hudson Bay (12.5%), both
in the United States, both corresponding to the most studied habitat type (temperate

coastal rivers; 44.23%; Table 4).

DISCUSSION

Temporal tendencies and characteristics of studies.

Following the world trend, which has been increasing in the number of publications
on wildlife related to various subjects, such as ecology (Ribeiro et al. 2007; Collins et
al. 2021) and conservation (Grelle et al. 2009), often complement each other (e.g.,
Oliveira et al. 2020), the ecology of the movement of freshwater turtles also increased
over the 42 years evaluated here. Possibly, this is due to the reflection of the
multiplication of journals specialized in herpetology over the years (Grelle et al. 2009),
greater investments in research in universities, and an increase in the number of
undergraduate and postgraduate courses in more remote places (e.g., Amazon; Martins
et al. 2007; Scarano, 2008; Medeiros and Leta 2020), covering a more diverse audience
and consequently increasing the number of people interested in herpetology (Campos et
al. 2014; Reboucas, 2022), although these last two have not been the priority of some
governments in recent years, such as in Brazil (Hipdlito et al. 2022; Galvao-Castro et al.
2022).

Improvements in data collection and analysis techniques (Ribeiro et al. 2007;
Doody et al. 2009; Christensen and Chow-Fraser 2014; Kingsbury and Robinson 2016;

Cochrane et al. 2019) and the increase in knowledge about taxonomy, distribution and
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attributes of life history, basic biology and ecological characteristics of various species
(e.g., Deeth and Coleman 2022; Geller et al. 2022) in addition to the concern with
biological conservation, which has increased greatly in recent years and in all segments
of society to the detriment of anthropogenic actions (Ribeiro et al. 2007), have also
contributed to the increase in publications, not only of freshwater turtles but also of
several taxa.

The predominant journals in issues of publications related to the theme are
specialized in the herpetological field (e.g., Copeia, Journal of Herpetology,
Herpetology review). The journal Copeia was established in 1913 and was considered
one of the first devoted to studies of fish, amphibians and reptiles. Years later, its name
was changed to Ichthyology & Herpetology, and it is currently internationally
recognized as one of the most prestigious scientific journals of its kind (ASIH, 2022). It
Is noteworthy that the journal where there were more publications is specialized in
turtles (= Chelonians): Chelonian Conservation and Biology, responsible for 18.26% of
the publications, being also the journal with the greatest impact factor and the most
cited journal in scienciometry studies with turtles in general (Kopperundevi 2019;
Vences-Pérez et al. 2022). The journal Chelonian Conservation and Biology emerged in
1994 (Karen and Scott 1994) and has been the preferred journal by researchers for
publications related to tortoise and freshwater on various subjects, such as diversity,
geographical distribution, natural history, ecology, reproduction, morphology and
natural variation, population status and issues of human exploitation or conservation
management (Karen and Scott, 1994; Stearns, 1995). Keyword analysis showed a trend
in works involving the ecology of movement in freshwater turtles, where the four most

cited can be considered highly effective in identifying relevant articles.
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Studies using telemetry were predominant in the United States (57%), followed
by Canada (14%), countries with high investment in science and technology in the
world (Cruz 2007; Schneeganz et al. 2021). Telemetry equipment has a high cost and
comes mainly from the United States, which exports it to other countries. The import of
research equipment and materials is considered one of the biggest obstacles to the
progress of science in several countries, which comes up against bureaucracy
(Rumjanek, 2006) and the variation of the dollar, which makes telemetry equipment
often unfeasible, being preferable to the techniques considered more popular (e.g.,
spool-and-line; Boonstra et al. 1986), and they do not need large investments.

Another aspect that should be considered is the high diversity of freshwater
turtles in these three countries (Neoarctic region and Neotropical region; Bour 2008),
with a high rate of endemism, and many of them are considered threatened with
extinction, which consequently raises interest in understanding aspects about the
ecology of species seeking to subsidize strategic planning for conservation in a global
effort (Turtle Conservation Fund 2007).

Studies with unique species were responsible for 83% of our study, and
Emydoidea blandingii was the most studied species, present in sixteen articles. In fact,
movement studies usually evaluate a species (Holyoak et al. 2008). This high number of
studies, very close to the second most studied species (Glyptemys insculpta; n = 15), is
related to the geographical location of species distribution and related to work carried
out by authors who have deepened their research efforts on the conservation of the two
species, both considered internationally threatened (van Dijk and Rohdin, 2011; van

Dijk and Harding 2011).

Have the studies prioritized any method or analysis?.
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In the 42 years of studies evaluated here, there has been an explicit increase in
studies that used telemetry techniques to understand aspects related to the domestic
reach and use of the space of freshwater turtles and the continuous dependence on
traditional but outdated methods. Although the technique of VHF transmitters did not
deviate from the standard found by Crane et al. (2021), in recent years, researchers have
increasingly adopted the technique of GPS transmitters in the study of animal behavior
and ecology (Tomkiewicz et al. 2010; Crane et al. 2021), including with freshwater
turtles, sometimes individually or in conjunction with other techniques (Rowe et al.
1991; Christensen and Chow-Fraser 2014; Famelli et al. 2016). Despite this, the
effectiveness of GPS trackers for aquatic and semiaquatic species has not yet been fully
examined (Quaglietta et al. 2012; Jeffers et al. 2016; Cochrane et al. 2019), unlike other
groups, such as sea turtles (Schofield et al. 2007; Godley et al. 2008; Hays and Hawkes
2018; Pheasey et al. 2020).

Our results showed that 56% of the studies conducted in the last 10 years have
used kernel density estimates (KDEs) and minimum convex polygons (MCPs) to
provide greater robustness to the results. Scientists justify the use of these two
estimators due to the possibility of comparison with the broader literature on the spatial
ecology of species, in this case, of reptiles (Crane et al. 2021). In contrast, some authors
ask that these two analyses require considerable control of the methods because they are
sensitive to differences in the sampling effort (for example, the number of locations,
duration and frequency of tracking) and therefore should not be stimulated because they
hinder comparisons (Kraunstaber et al. 2012; Mitchell et al. 2019; Silva et al. 2020;
Crane et al. 2021). However, more appropriate and updated methods have not been
observed in any studies (e.g., Brownian bridge movement model - BBMM; Horne et al.

2007; Kie et al. 2010; Silva et al. 2018, 2020; Signer and Balkenhol 2015).
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There are several studies demonstrating the effectiveness of more recent
analytical methods (e.g., Silva et al. 2020, 2021) and how they can be applied to radio
telemetry data. Unlike traditional estimation methods (KDEs and MCPs), motion-based
area estimation models (e.g., AKDEs) do not require the same prepositions as
traditional methods, such as point independence, and can better protect against
underestimation and overestimation (Fleming & Calabrese 2017; Silva et al. 2020;
Crane et al. 2021). Low sample sizes do not exclude the use of newer methods such as
AKDE and BBMMs since these methods can be effective for estimating motion
pathways with a small set of VHF data (Silva et al. 2020, 2021; Crane et al. 2021).

Although researchers worldwide are still developing analytical methods within
movement and spatial ecology (Laver & Kelly 2008), the proportion of studies using
movement-specific methods has not increased (Joo et al. 2020), demonstrating a high
dependence on traditional methods. The home range of the species was studied in 49%
of the works involving telemetry. In the last 20 years, following the increasingly
improved analytical methods (Silva et al. 2020, 2021), there has been an increase in
studies involving the domestic reach of reptiles (Crane et al. 2021) since for many
years, the estimate of domestic reach has been useful to investigate animal-habitat
relationships and to test the effects of sex, age, physiological requirements, social status
or ecological restrictions in 2002. Freshwater keloids have different ranges of domestic
range, and in some cases, they can be different between males and females (Jones 1996;
Tucker et al. 2001; Doody et al. 2002; Fachin-Teran et al. 2006; Ponce de Ledo et al.
2019) and weight (Muller et al. 2019) and can be influenced by external factors such as
water pollution (Luiselli et al. 2006) and seasonality (Remsberg et al. 2006; Forero-

Medina et al. 2011; Ponce de Ledo et al. 2019).
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The review covered several species, but we identified gaps to be filled in relation
to some species that need studies with telemetry. For example, in the Neotropical
region, there is a great diversity of freshwater turtles, including newly described species
(Chelus orinocensis, Mesoclemmys juritiensis) and endangered species (e.g.,
Mesoclemmys vanderhagei) that have very little information regarding their movement.
In addition, better methodological comparisons are still necessary, considering that only
one study in Brazil was concerned with comparing the different equipment in relation to

its effectiveness (Guilhon et al. 2011).

Have studies been concerned with the conservation of species?.

In our study, we observed that almost half of the studies that addressed aspects
of species movement are related to species that are under some degree of threat (e.g.,
Carettochelys insculpta, Hydromedusa maximiliani, Mesoclemmys dahli, Rheodytes
leukops, Macrochelys temminckii and Actinemys marmorata), although the diversity
was not as representative. Turtles represent one of the most endangered vertebrate
groups on the planet, with approximately 10% of the currently recognized species
considered critically endangered on the IUCN Red List of Threatened Species (Turtle
Conservation Fund 2007; IUCN 2022) and approximately 63% of the assessed species
and approximately 42% of all known species considered threatened (IUCN 2022).

Biological characteristics of turtles, such as delayed sexual maturity, high
juvenile mortality and a long adult life with low natural mortality, have left turtle
populations vulnerable to various threats potentiated by humans (Turtle Conservation
Fund, 2007). Historically, many species of chelonians in various parts of the world have

great food, economic and cultural importance, and their eggs, meat, viscera, fat and hull
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have been used intensely by humans, mainly in food and traditional medicine (Van Dijk
et al. 2000; Gibbons et al. 2000; Turtle Conservation Fund 2007; Van Dijk et al. 2014).

More than half of the studies were carried out in anthropized areas. Despite this,
a large number of studies have been carried out in protected areas from large parks (e.g.,
Algonquin Provincial Park and Ndumo Game Reserve; Obbard et al. 1980, 1981,
Paterson et al. 2012, 2014; Price et al. 2022) to smaller areas (e.g., Mamiraua
Sustainable Development Reserve, Adolpho Ducke Forest Reserve, The Trombetas
Biological Reserve and Carlos Botelho State Park; Fachin-Teran et al. 2006; Guilhon et
al. 2011; Famelli et al. 2016). Evidently, some species were studied only in protected
areas (e.g., Podocnemis sextuberculata, Podocnemis unifilis, Macrochelys temmninckii
and Platysternon megacephalum), possibly due to the greater ease in obtaining help
with logistics and public—private partnership, which may promote an increase in the
effectiveness of protection, handling and research with these animals (Marcovaldi et al.
2005).

In the present study, we evidenced geographic gaps in studies using telemetry
worldwide. Although we have observed that telemetry studies follow the most diverse
regions and with greater endemism of freshwater turtles, there is still much to know,
especially in the less studied ecoregions. Freshwater ecoregions consist of a large area
that encompasses one or more freshwater systems with a distinct set of natural
freshwater communities and species and are considered priorities for biodiversity
conservation (FEOW 2023) and sea turtle studies. Freshwater should be stimulated in
these places, seeking to understand how the different anthropic impacts may affect the
movement of species in these places, especially those that are outside the currently

recognized global biodiversity conservation strategies.
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Although telemetry has been used by a relatively small number of studies of
freshwater turtles concentrated in a few places in the world, the studies still provide a
wealth of information on the ecology of movement of some of them, particularly on the
spatial distribution and movement within the study sites. Considering that few species
have been studied in comparison with the global richness of these animals, it is evident
that much remains to be known about the movement of dozens of species of freshwater
turtles, especially in regions where the greatest diversity of these animals is found, such
as the Neoarctic region, the Neotropical region and the Oriental region, in turtle

hotspots and priority areas for the conservation of freshwater turtles.
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endemic freshwater turtle species; (B) freshwater turtle species per ecoregion area; (C)
the number of endemic freshwater turtle species; and (D) freshwater turtle species
richness. (1) Highlight for the two continents with the highest number of publications

and their respective.

Table 1.Bibliographic base construction criteria.

Criterion Definition

Scopus, Web of Science and Google Scholar and
Database : .

private collection
Document type Scientific articles
Kevwords ((turtle OR chelonian) AND (freshwater* OR river*)

yw AND (telemetry OR radiotelemetry OR satellite))

Study areas No restrictions

Publication period
Research institution
Language of publication

July 2022
No restrictions
English

73



74

Table 2. List of the most relevant journals in terms of the number of scientific articles

published.
. N°

Rankin Journals Publication % Impact
g s factor
1° Chelonian Conservation and Biology 19 18.26 1.209
2° Journal of Herpetology 12 1153 1.43
3° Copeia 11 10.57 1.857
4° Herpetological Review 8 769 -
5o Herpetological ~ Conservation and 6 576 0959

Biology
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Table 3. Species cited in the 104 articles surveyed in the present work.

75

Taxon

Common name

Species citations®

Author

Testudines
Carettochelyidae
Carettochelys insculpta
Chelidae

Chelodina expansa
Elseya irwini
Hydromedusa maximiliani
Mesoclemmys dahli
Phrynops geoffroanus

Rheodytes leukops
Chelydridae

Chelydra serpentina

Macrochelys temminckii
Emydidae
Actinemys marmorata

Chrysemys picta

Clemmys guttata

Pig—nosed Turtle

Giant Snake—necked
Turtle

Irwin's Turtle
Maximilian’s Snake—
headed Turtle

Dahl’s Toadhead Turtle
Geoffroy’s Toadhead
Turtle

Fitzroy River Turtle

Common Snapping Turtle

Alligator Snapping Turtle

Western Pond Turtle

Eastern Painted Turtle

Spotted Turtle

e e e

(e}

N

Doody et al (2002)

Bower et al. (2012)

Freeman et al., (2018)

Forero—Medina et al. (2011); Famelli et al. (2016)
Forero—Medina et al. (2011)

Muller et al., (2019)

Tucker et al (2001)

Obbard et al (1980); Obbard and Brooks (1981); Saba and
Spotila (2003); Kobayashi et al (2006); Paisley et al.
(2008); Steen et al. (2010); Strain et al. (2012);
Anthonysamy et al. (2014); Hughes et al., (2019)

Howey and Dinkelacker (2008); Moore et al. (2014)

Bondi and Marks (2013); Zaragoza et al. (2015)

Saba and Spotila (2003); Bowne and White (2004);
Bowne et al (2006); Tran et al. (2007); Bowne (2008);
Anthonysamy et al. (2014)

Joyal et al (2001); Compton et al (2002); Kaye et al
(2005); Anthonysamy et al. (2014); Buchanan et al.,
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Taxon

Common name

Species citations®

Author

Emydoidea blandingii

Deirochelys reticularia
Emys orbicularis

Glyptemys insculpta

Glyptemys muhlenbergii
Graptemys barbouri

Graptemys flavimaculata

Graptemys geographica

Graptemys
pseudogeographica

Malaclemys terrapin

Blanding's Turtle

Eastern Chicken Turtle
European Pond Turtle

Wood Turtle

Bog Turtle
Barbour's Map Turtle

Yellow—blotched Map
Turtle

Common Map Turtle

False Map Turtle

Northern  Diamondback
Terrapin

16

15

1

(2017); Oxenrider et al. (2018); Odell et al., (2021); Hjort
Toms et al. (2022)

Rowe and Moli (1991); Piepgras and Lang (2000); Joyal
et al (2001); Innes et al. (2008); Beaudry et al. (2010);
Dowling et al. (2010); Millar and Blouin—Demers (2011);
Fortin and Dubois (2012); Paterson et al. (2012);
Anthonysamy et al. (201); Anthonysamy et al. (2014);
Christensen and Chow-Fraser (2014); Paterson et al.
(2014); Hasler et al. (2015); Zagorski et al. (2019);
Hamernick et al. (2019)

Buhlmann (1995)

Cadi et al (2004); Najbar et al. (2015)

Brewster and Brewster (1991); Remsberg et al. (2006);
Greaves and Litzgus (2007); Paterson et al. (2012); Parren
(2013); Paterson et al. (2014); McCoard et al. (2016);
McCoard et al., (2018); Thompson et al., (2018);
Cochrane et al., (2019); Lapin et al. (2019); Hagani et al.
(2021); Otten et al. (2021)

Morrow et al. (2001); Somers et al. (2007)

Sterrett et al. (2015)
Jones (1996)

Tran et al. (2007); Ouellette and Cardille (2011);
Freedberg (2020); Nagle and Russell (2020)

Bodie and Semlistch (1999)

Lamont et al (2021)
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77

Taxon Common name Species citations® Author
: . Northern Red—bellied .
Pseudemys rubiventris Turtle 1 Saba and Spotila (2003)
Pseudemys nelsoni Florida Redbelly Turtle 1 Kramer (1995)
Pseudemys floridana Florida Cooter 1 Burke and Gibbons (1995)
Burke and Gibbons (1995); Bodie and Semlistch (1999);
Trachemys scripta Yellowbelly Slider 6 Saba and Spotila (2003); Tran et al. (2007); Mali et al.,
(2016)
Geoemydidae
Mauremys rivulata Western Caspian Turtle 1 Chelazzi et al. (2007)
Mauremys sinensis $S:{1|23e Striped-necked 1 Chen and Lue (2008)
Kinosternidae
Kinosternon baurii Striped Mud Turtle 1 Stemle et al., (2019)
Kinosternon integrum Mexican Mud Turtle 2 Pérez—Pérez et al., (2017); Aparicio et al., (2018)
Kinosternon leucostomum White—lipped Mud Turtle 1 Morales—Verdeja and Vogt (1997)
Kinosternon sonoriense ~ Sonoran Mud Turtle 1 Ligon and Stone (2003)
Kinosternon subrubrum  Eastern Mud Turtle 3 Eluré%igfl Gibbons (1995); Steen et al. (2007); Cordero et
Sternotherus carinatus Razorback Musk Turtle 1 Kavanagh and Kwiatkowski (2016)
Sternotherus odoratus Stinkpot Turtle 3 SIOV\(IS(?;SL (2009); Anthonysamy et al. (2014); Laverty et
Sternotherus peltifer Stripeneck Musk Turtle 1 Ennen and Scott (2008)
. Ennen and Scott (2008); Ennen and Scott (2013);
Sternotherus minor Loggerhead Musk Turtle 3 Munscher et al., (2021)
Pelomedusidae
Pelomedusa galeata South African Helmeted 1 Price et al. (2022)

Terrapin
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Taxon

Common name

Species citations®

Author

Pelusios castaneus
Pelusios niger

Pelusios sinuatus

Platysternidae
Platysternon
megacephalum
Podocnemididae
Peltocephalus
dumerilianus

Podocnemis expansa

Podocnemis lewyana

Podocnemis
sextuberculata

Podocnemis unifilis

Trionychidae
Apalone mutica

Apalone spinifera

Rafetus euphraticus

African Mud Turtle
West  African
Forest Turtle
Serrated Turtle

Black

Big—headed Turtle

Big—headed Amazon
River Turtle
South  American
Turtle

Rio Magdalena
Turtle
Six—tubercled
River Turtle
Yellow-spotted Amazon

River Turtle

River
River

Amazon

Smooth Softshelled Turtle

Eastern Spiny Softshel

Euphrates  Soft-shelled

Turtle

1
1
1

1
4

1

Luiselli et al (2006)
Luiselli et al (2006)
Price et al. (2022)

Sun et al. (2014)

Guilhon et al. (2011)

Guilhon et al. (2011); Ferrara et al. (2013); Carneiro and
Pezzuti (2015); Bernardes et al. (2017)

Alzate-Estrada et al., (2019)

Fachin—Teran et al (2006); Guilhon et al. (2011)

Guilhon et al. (2011); Naveda—Rodriguez et al. (2018);
De Ledo et al., (2019)

Ross et al. (2019)
Galois et al (2002); Tornabene et al., (2017); Schneider et
al., (2019); Tornabene et al., (2019)

Ghaffari et al. (2014)

®When the same article studied multiple species, the same article is included multiple times in the species study counts presented.
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Table 4. Number of articles published in each of the world's freshwater ecoregions (FEOW, 2022).

State ID  Studies number Realm Major Habitat Type Ecorregion
116 9 Nearctic Large lakes Laurentian Great Lakes
117 1 Neartic Temperate coastal rivers ~ St.Lawrence
. . Northeast US & Southeast
118 1 Neartic Temperate coastal rivers Canada Atlantic Drainages
125 3 Neartic Temperate coastal rivers ~ Sacramento — San Joaquin
132 1 Neartic Temperate upland rivers ~ Upper Rio Grande — Bravo
140 2 Neartic Temperate coastal rivers  East Texas Gulf
144 1 Neartic Temperate upland rivers  US Southern Plains
USA 145 2 Neartic Temperate upland rivers  Quachita Highlands
. Temperate floodplain o
148 14 Neartic rivers and wetlands Upper Mississippi
149 2 Neartic Temperate floodplain Lower Mississippi
rivers and wetlands
150 7 Neartic Temperate upland rivers  Teays — Old Ohio
156 3 Neartic Trop|ca|_ and subtropical Florida Peninsula
coastal rivers
157 8 Neartic Temperate coastal rivers ~ Appalachian Piedmont
158 6 Neartic Temperate coastal rivers  Chesapeake Bay
110 13 Neartic Temperate coastal rivers  Southern Hudson Bay
Canada 114 3 Neartic Temperate coastal rivers Gulf of St.Lawrence Coastal
Drainages
Australia 807 4 Australasia Temperate coastal rivers  Eastern Coastal Australia
Tropical and subtropical
316 3 Neotropic floodplain  rivers and Amazonas Lowlands
wetland complexes
Tropical and subtropical
Brazil 343 1 Neotropic floodplain  rivers and Paraguay
wetland complexes
. Tropical and subtropical
344 1 Neotropic upla?n d rivers P Upper Parana
323 4 Neotropic large river deltas Amazonas Estuary & Coastal
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https://www.feow.org/ecoregions/details/116
https://www.feow.org/ecoregions/details/117
https://www.feow.org/ecoregions/details/118
https://www.feow.org/ecoregions/details/118
https://www.feow.org/ecoregions/details/125
https://www.feow.org/ecoregions/details/132
https://www.feow.org/ecoregions/details/140
https://www.feow.org/ecoregions/details/144
https://www.feow.org/ecoregions/details/145
https://www.feow.org/ecoregions/details/148
https://www.feow.org/ecoregions/details/149
https://www.feow.org/ecoregions/details/150
https://www.feow.org/ecoregions/details/156
https://www.feow.org/ecoregions/details/157
https://www.feow.org/ecoregions/details/158
https://www.feow.org/ecoregions/details/110
https://www.feow.org/ecoregions/details/114
https://www.feow.org/ecoregions/details/114
https://www.feow.org/ecoregions/details/807
https://www.feow.org/ecoregions/details/316
https://www.feow.org/ecoregions/details/343
https://www.feow.org/ecoregions/details/344
https://www.feow.org/ecoregions/details/323

State ID  Studies number Realm Major Habitat Type Ecorregion
Drainages
169 2 Neotropic Troplcal. and subtropical Rio Balsas
: coastal rivers
Mexico . Tropical and subtropical
i1 Neotropic coastal rivers Papaloapan
Japan 642 2 Paleartic Temperate coastal rivers  Honshu — Shikoku — Kyushu
Taiwan 757 1 Indo—Malay Troplcal_ and subtropical Western Taiwan
coastal rivers
Iran 701 1 Paleartic Xeric freshwaters "’}nd Baluchistan
endorheic (closed) basins
Poland 404 1 Paleartic Temperate floodplain Central & Western Europe
rivers and wetlands
Spain 403 1 Paleartic Temperate coastal rivers ~ Cantabric Coast — Languedoc
Nigeria 506 1 Afrotropic large river deltas Niger Delta
South Africa 578 1 Afrotropic Temperate coastal rivers  Cape Fold
Colombia 302 2 Neotropic Troplcal_ and subtropical Magdalena — Sinu
upland rivers
Equador 01 1 Neotropic Troplcal_ and subtropical Nor_th Andean Pacific Slopes
coastal rivers — Rio Atrato
France 403 1 Palearctic Temperate coastal rivers  Cantabric Coast — Languedoc
Greece 421 1 Palearctic Temperate coastal rivers  lonian Drainages
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https://www.feow.org/ecoregions/details/323
https://www.feow.org/ecoregions/details/169
https://www.feow.org/ecoregions/details/171
https://www.feow.org/ecoregions/details/642
https://www.feow.org/ecoregions/details/757
https://www.feow.org/ecoregions/details/701
https://www.feow.org/ecoregions/details/404
https://www.feow.org/ecoregions/details/403
https://www.feow.org/ecoregions/details/506
https://www.feow.org/ecoregions/details/578
https://www.feow.org/ecoregions/details/302
https://www.feow.org/ecoregions/details/301
https://www.feow.org/ecoregions/details/301
https://www.feow.org/ecoregions/details/403
https://www.feow.org/ecoregions/details/421

Suplementary material

List of articles used in this article

10.

Alzate-Estrada, D.A., Péez, V.P., Cartagena—Otalvaro, V.M. and Bock, B.C. 2020.
"Linear Home Range and Seasonal Movements of Podocnemis lewyana in the
Magdalena River, Colombia." Copeia 108(1).

Anthonysamy, W.J.B., Dreslik, M.J. and Phillips, C.A. 2013. "Disruptive Influences
of Drought on the Activity of a Freshwater Turtle." The American Midland
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Anthonysamy, W.J.B., Dreslik, M.J., Mauger, D. and Phillips, C.A. 2014. "A
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Aparicio, A., Mercado, I.E., Ugalde, A.M., Gaona—Murillo, E., Butterfield, T. and
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RESUMO

Compreender como os regimes hidrologicos influenciam o comportamento espacial de quelénios de
agua doce é fundamental para a conservacdo em sistemas fluviais cada vez mais regulados. Neste
estudo, investigamos os padrfes sazonais de movimentacdo, orientacdo direcional e uso do espaco da
tartaruga tracajd (Podocnemis unifilis) no médio rio Xingu, Amazo6nia brasileira, sob influéncia do
complexo hidrelétrico de Belo Monte. Utilizamos dados de telemetria via satélite de 32 individuos
monitorados entre 2017 e 2022, para analisar métricas de deslocamento, orientacdo azimutal e uso
sazonal de habitat ao longo de trés setores longitudinais do rio (Montante, Intermediario e Jusante).
Foram registradas 2.264 localizac6es validas ao longo de 1.637 dias de rastreamento. Embora as fémeas
tenham percorrido distancias totais maiores em comparacdo aos machos, ndo foram observadas
diferencas estatisticamente significativas entre 0s sexos, setores ou estacdes hidroldgicas nas métricas de
deslocamento total ou linear. As analises direcionais também ndo indicaram orientagdo significativa
entre sexos ou estacOes. Notavelmente, os testes de V ndo evidenciaram alinhamento direcional em
relacdo as praias de desova. Apesar disso, 0 comportamento espacial apresentou variacdo sazonal:
durante o periodo de &guas baixas, os individuos demonstraram movimentos localizados e forte
fidelidade a algumas praias. Em contrapartida, o periodo de aguas altas foi associado a expansao do uso
do espaco e a ocupacdo de habitats temporariamente acessiveis. Essa expansdo foi mais evidente nos
setores Intermediario e Montante, sugerindo que a conectividade hidrologica é um fator chave na
dispersdo espacial. Nossos resultados mostram que P. unifilis apresenta plasticidade comportamental no
uso do espago, mas auséncia de movimentos direcionais consistentes. Esses padrdes reforcam a
importancia de habitats locais heterogéneos e a necessidade de preservar a conectividade sazonal em

ambientes fluviais impactados por empreendimentos hidrelétricos.

Palavras-chave: Quelénios amazonicos, Influéncia hidroldgica, Ecologia aquética, Estatisticas

circulares, Métricas de movimentacao, Anélise direcional.
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ABSTRACT

Understanding how hydrological regimes influence the spatial behavior of freshwater turtles is essential
for conservation in increasingly regulated river systems. In this study, we have investigated seasonal
patterns of movement, directional orientation, and space use of the yellow-spotted river turtle
(Podocnemis unifilis) in the middle Xingu River, Brazilian Amazon, under the influence of the Belo
Monte hydroelectric complex. Using satellite telemetry data from 32 individuals monitored between
2017 and 2022, we have analyzed displacement metrics, azimuthal orientation, and seasonal habitat use
across three longitudinal sectors of the river (Upstream, Midstream, and Downstream). A total of 2,264
valid locations were recorded over 1,637 tracking days. Although females traveled greater total
distances compared to males, no statistically significant differences were found between sexes, river
sectors, or hydrological seasons in either total or linear movement metrics. Directional analyses also
revealed no significant orientation by sex or season. Notably, V-tests showed no directional alignment
toward nesting beaches. Despite this, spatial behavior varied seasonally: during the low-water period,
individuals exhibited localized movements and strong fidelity to specific beaches. In contrast, the high-
water period was associated with an expansion in space use and the occupation of temporarily accessible
habitats. This expansion was most pronounced in the Midstream and Upstream sectors, suggesting that
hydrological connectivity is a key driver of spatial dispersal. Our results show that P. unifilis exhibits
behavioral plasticity in space use but lacks consistent directional movement. These patterns underscore
the importance of maintaining heterogeneous local habitats and preserving seasonal connectivity in

riverine environments affected by hydropower development.

Keywords: Amazonian Chelonians, Hydrological Influence, Aquatic Ecology, Circular Statistics,

Movement Metrics, Directional Analysis.
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INTRODUCTION

The Amazon Basin, encompassing an extensive area of approximately 5 million km?, is

recognized as the largest tropical rainforest in the world and harbors an enormous diversity of flora and
fauna (Perkison, 1968; Haugaasen and Peres, 2006; Hansen et al., 2013; Ter Steege et al., 2013; Sheil,
2014). The Amazon is fundamental to global climate balance and the maintenance of ecological
processes, acting as a prominent carbon sink and affecting regional and global precipitation dynamics
(Davidson et al., 2012; Malhi et al., 2008; Matricardi et al., 2020; Lapola et al., 2023). Furthermore,
this biome plays an important role in biodiversity conservation, accommodating a multitude of endemic
species and providing essential ecosystem services (Goulding et al., 2003; Lewinsohn et al., 2005;
Fearnside, 2005).
However, population growth and the intensification of economic activities have resulted in
environmental degradation in the Amazon, including intensive hunting and wildlife capture for trade,
leading to worrying population declines of fauna species (Smith, 1979; Fearnside, 1990; Betts et al.,
2008; Lapola et al., 2023). Agricultural expansion, mining, and the construction of roads and
hydroelectric dams have also contributed to these declines, causing ecosystem fragmentation and
reducing forest cover, directly affecting biodiversity (Fearnside, 1990, 2005; Alho, 2011; Laurance et
al., 2014).

Among the most concerning species, Podocnemis unifilis (yellow-spotted river turtle) has
suffered drastic population reductions (Tortoise & Freshwater Turtle Specialist Group, 1996; Santos-
Arraes et al., 2016; Flores-Ponce et al., 2022) due to overexploitation (Bates, 1863; Smith, 1979;
Pritchard and Trebbau, 1984; Pantoja-Lima et al., 2014; Rebélo and Pezzuti, 2000; Moll & Moll, 2004;
Fachin-Teran, 2005; Vogt, 2008; Ataides et al., 2010; Pezzuti et al., 2010; Casal et al., 2013), habitat
loss (Tortoise & Freshwater Turtle Specialist Group, 1996), illegal trade (Kemenes and Pezzuti, 2007),
climate change (Eisemberg et al., 2016; Butler, 2019; Forero-Medina et al., 2021), and exposure to

heavy metals (e.g., mercury and pesticides; Pignati et al., 2018 a,b; Borges et al., 2022).
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The species is classified as “Vulnerable” by the International Union for Conservation of Nature -
IUCN (IUCN, 2022) and as “Near Threatened” on the national list of threatened species (MMA, 2022).
It is also included in Appendix Il of CITES and is considered endangered by the U.S. Fish and Wildlife
Service (USFWS) (Vogt, 2008).

This species is considered threatened also due to its longevity and late sexual maturation
(Pritchard, 1979), which make individuals particularly susceptible to exploitation throughout their lives
(Norris and Michalski, 2013). These characteristics significantly increase the risk of capture before they
reach reproductive maturity, compromising the long-term viability of populations (Smith, 1979; Moll
and Moll, 2004). Moreover, their dependence on suitable beaches for nesting restricts reproduction to
scarce and often exposed habitats, increasing their vulnerability to predation by both animals and
humans (Janior et al., 2009; Pignati et al., 2013; Arraes et al., 2014; Guimardes et al., 2023). The
exposure of these reproductive sites also makes them susceptible to extreme climatic events, which can
lead to nest destruction (Ferrara et al., 2014; Fagundes et al., 2018; Guimardes et al., 2023).
Additionally, temperature plays a crucial role in determining the sex ratio of hatchlings, a process that
can be altered by environmental changes, resulting in population imbalances (Alho and Padua, 1982;
Ferreira-Junior and Castro, 2006; Lubiana and Ferreira Junior, 2009; Bonach et al., 2011; Alves Janior
etal., 2012).

P. unifilis holds significant ecological importance, being responsible for seed dispersal and
maintenance of water quality (Moll and Jansen, 1995; Vogt, 2008), and also has great economic value
for some regions of the Amazon (Smith, 1979; Alves and Santana, 2008; Fachin-Teran et al., 2004;
Pezzuti et al., 2010; Santos and Fiori, 2020). Although this species has been protected in Brazil since
1979 (Cantarelli et al., 2014), its protection has been less effective in certain areas (Jaffé et al., 2008;
Cantarelli et al., 2014). The lack of adequate enforcement and the difficulty in controlling illegal
activities in vast areas of the Amazon, specifically in their reproductive environments, make this species
highly vulnerable (Kemenes and Pezzuti, 2007; Jaffé et al., 2008; Cantarelli et al., 2014; Forero-Medina
et al., 2021). Furthermore, changes in hydrological regimes along rivers, due to the construction of

hydroelectric dams and climate change, are known to directly impact nesting sites and migration routes
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of river turtles (Alho and Padua, 1982; Alcantara et al., 2013; Eisemberg et al., 2016; Simoncini et al.,
2019; Ataides et al., 2021).

Both adult individuals and eggs are widely consumed by riverside populations in the Amazon,
which further aggravates the population decline of these species (Alcantara et al., 2013; Ataides et al.,
2010; Pantoja-Lima et al., 2012; Norris and Michalski, 2013; Cajaiba et al., 2015). This practice, deeply
rooted in cultural traditions, represents an important source of protein for local communities, but at high
and unmanaged levels, it significantly contributes to the overexploitation of populations (Miorando et
al., 2013; Arraes et al., 2016). The continuous removal of reproductive females and egg collection
directly decrease the reproductive success and recruitment rate of the species, impacting their recovery
capacity over time (Caputo et al., 2005; Arraes et al., 2016).

The increasing demand for consumption and trade of these turtles, not only in riverside
communities but also in urban markets, has increased the pressure on wild populations (Fachin-Teran et
al., 2000; Camillo et al., 2012; Lopes et al., 2012). Therefore, intensive capture in nesting areas and the
illegal trade of eggs and meat intensify the risk of local extinction in various regions, especially when
coupled with habitat loss and natural predation (Vogt, 2008; Ferrara et al., 2014; Pantoja-Lima et al.,
2014), and have resulted in an evolutionary trap for Amazonian chelonian populations (Hale et al.,
2016; Quintana et al., 2019; Robertson & Blumstein, 2019).

P. unifilis has distribution areas that reflect its need for specific resources for feeding and
reproduction (Naveda-Rodriguez et al., 2018; Cueva et al., 2018; Ponce de Ledo et al., 2019). The home
range of this species can vary significantly throughout the year, depending on factors such as food
availability, hydrological conditions, and reproductive needs (Moll and Moll, 2004; Fagundes et al.,
2018; Ponce de Ledo et al., 2019). The nesting period of P. unifilis in the Xingu River generally occurs
in August and September, with an incubation period of approximately 65 days, which may vary in
response to environmental conditions (Vogt, 2008; Ferreira-Janior and Castro, 2010; Lacava & Balestra,
2019).

Females of this species tend to select higher nesting sites to minimize the risk of nest flooding

during the rainy season (Vanzolini, 2003; Ferreira-Junior and Castro, 2010; Pignati et al., 2013; Ferrara
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et al., 2014). However, the species demonstrates considerable behavioral plasticity, apparently not
having strict requirements regarding nesting site selection, with nesting already recorded in
anthropogenic areas, indicating its ability to adapt to different types of environments (Santos, 2013).

Few studies have sought to evaluate the movement patterns of Podocnemididae species, relying
mainly on VHF radio telemetry techniques (Book et al., 1998; Guilhon et al., 2011; Naveda-Rodriguez
et al., 2018; Ponce de Ledo et al., 2019) and, in some cases, on the use of GPS (Guilhon et al., 2011;
Souza, 2012; Carneiro and Pezzuti, 2015). Most of these studies have been conducted on the giant South
American river turtle (Podocnemis expansa). More recently, the use of technologies such as satellite
tracking has been increasingly employed to understand the movement patterns and habitat use of
species, particularly turtles (Godley et al., 2008; Schofield et al., 2010; Christensen and Chow-Fraser,
2014; Cochrane et al., 2019; Ribeiro et al., 2024). Despite technological advancements, little is still
known about the movement patterns of Podocnemis unifilis.

What is known is that the movement of P. unifilis is intrinsically linked to the hydrological
cycles of the Amazon, being shaped by different phases that directly influence the availability of areas
for feeding, resting, and reproduction (Ponce de Ledo et al., 2019; Fagundes et al., 2021). During the
reproductive period, females generally move over greater distances in search of suitable beaches for
nesting, while males tend to remain in more restricted foraging areas (Moll and Moll, 2004; Ferrara et
al., 2014). Seasonal variation in water levels also directly impacts turtle movements, with Flooding
season expanding available habitats and facilitating greater dispersion, while the Dry season restricts
their movements to remaining water bodies, limiting their activities (Bodie, 2001; Fagundes et al.,
2021).

However, to date, there are no specific studies focused on evaluating the movement patterns
of Podocnemis unifilis in the Xingu River. In light of this gap, the present study aims to fill this need by
investigating how the movement patterns of P. unifilis and the hydrological cycles of the Xingu river
shape the displacements and behavior of this species.

The specific objectives of this study were to: i) assess the directional orientation behavior of

Podocnemis unifilis; ii) investigate the seasonal movement patterns of the species in the middle Xingu
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River by comparing spatial metrics such as total distance traveled, linear displacement, and average
daily movement between low-water and high-water periods; iii) identify, map, and characterize areas of
highest use intensity; and iv) compare space use among the different river sectors (Upstream,

Midstream, and Downstream).

MATERIALS AND METHODS:
Target species — Podocnemis unifilis Troschel, 1848, commonly known as "tracaja," is a medium-sized
species with a carapace length of up to 46.5 cm and a weight of 11 kg (Vogt, 2008). This species occurs
in South America, where it is registered in Colombia, Venezuela, Guyana, French Guiana, Suriname,
Brazil, Peru, Ecuador, and Bolivia (Pritchard & Trebbau, 1984; Dixon & Soini, 1986; Pefaloza et al.,
2013; Uetz et al., 2024). In Brazil, it is found in the Amazon and Cerrado biomes, and its distribution
covers the Amazon, Tocantins/Araguaia, Atlantic Northeast and Paraguay river basins (VVogt, 2008).
Due to the historical exploitation and threats faced by species of the Podocnemididae family in
the Amazon, the Brazilian government established the Amazon Turtle Project (PQA) in 1979 (IBAMA,
1989; Cantarelli et al., 2014; Fagundes et al., 2021; Lacava et al., 2024). This program aims to protect
the nesting areas of these and other species across several states. In this context, the need to develop a
comprehensive conservation plan incorporating various strategies was identified, with a particular focus
on preserving nesting areas (Cantarelli et al., 2014; MMA, 2019). In 2015, the Federal Government
established the National Action Plan for the Conservation of Amazonian Turtles (PAN Queldnios
Amazonicos), targeting the same species covered by the PQA (MMA, 2019; Fagundes et al., 2021).
Currently, PAN Queldnios Amazo6nicos serves as the main strategic instrument for the conservation of

Amazonian turtles, particularly P. unifilis in Brazil.

Study area — The study was conducted along the Xingu River (Pard, Brazil), covering three sections
defined by their position relative to the Belo Monte Hydroelectric Complex: upstream (above the
Pimental dam, near Altamira), midstream (between the Pimental dam and the main powerhouse), and

downstream (below the powerhouse, including Volta Grande and the REVIS reserve) (Figure 1). The
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region has a humid tropical climate with a distinct hydrological seasonality—rainy season from
December to April and dry season from June to November (ANA, 2013; IBGE, 2020).

The Xingu River, a major clearwater Amazonian tributary, spans ~2,500 km and drains 510,000
km?2 across Amazon—Cerrado ecotones (Sioli, 1985; Goulding et al., 2003). Its geomorphological
complexity—floodplains, rapids, anastomosing channels, and varzea—supports diverse aquatic habitats,
particularly in Volta Grande (Sawakuchi et al., 2015; Kalacska et al., 2019). Recognized for its
ecological importance, the basin is targeted by conservation policies such as the National Action Plan

for Endemic and Threatened Species of the Lower and Middle Xingu (ICMBio, 2012).
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Figure 1 - Map of the Xingu River stretch in Para, Brazil, indicating the study area of 32 individuals

monitored between 2017 and 2022.
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Data Collection. — Transmitters. Individuals were captured using various methods (Balestra et al.,
2016) during multiple field campaigns along the Xingu River, as part of the Turtle Conservation and
Management Program of the Belo Monte Hydroelectric Power Plant. Each turtle was fitted with a
satellite transmitter attached to the posterior portion of the carapace using non-toxic epoxy resin. The
transmitters (models Kiwisat K2G 158A, K2G 273C, and K2G 173A) were programmed to record
geographic positions at regular intervals of 2 to 3 hours, storing date, time, and coordinates
(latitude/longitude, WGS84 datum). Locations were transmitted via satellite uplink (Argos system)

whenever the animal surfaced, allowing for remote tracking without the need for frequent recapture.

Data Analysis — Data Filtering. A preliminary evaluation of the telemetry dataset was conducted to
ensure data quality. This involved the manual exclusion of anomalous or biologically implausible
locations (i.e. urban areas or roads) as well as all Class Z records, which are known for low positional
accuracy (Vincent et al., 2002; Costa et al., 2010; Patterson et al., 2010; ARGOS, 2016; Hooten et al.,
2017). Data segments with gaps longer than 3 to 5 days were split into independent records, following
Douglas et al. (2012). The Douglas-Argos Filter (DAF) was applied, using spatial criteria such as
distance and turning angle thresholds, combined with a conservative speed limit of 0.5 m/s based on
related freshwater turtle species (Freitas et al., 2008; Shimada et al., 2012). In addition, the Local
Outlier Factor (LOF) method was used to identify and exclude statistical outliers (Breunig et al., 2000;

Aggarwal, 2015).

Sampling Effort and Bias Control - To ensure that movement patterns were not influenced by
variation in tracking effort, a Spearman correlation was performed between the number of monitored

days and the number of valid locations per individual (Corder & Foreman, 2014).

Directional Analysis and Orientation Structure - The direction of movements was analyzed through

the calculation of azimuths between successive locations, representing the direction of each movement
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performed by an individual. For each set of azimuths, the Rayleigh test was applied to assess whether
the angular distribution was random or concentrated in a predominant direction (Batschelet, 1981;
Pewsey et al., 2013; Landler et al., 2021). Directional patterns were graphically visualized using rose
diagrams (Fisher, 1995; Afonso et al., 2020; Ferreira et al., 2022).

Additionally, descriptive circular statistics such as mean direction, circular standard deviation,
and the concentration parameter k were calculated to describe the consistency of orientation within each

group of individuals (Otieno & Anderson-Cook, 2006; Pewsey et al., 2013).

Statistical Modeling of Movement Metrics - The movement metrics evaluated included total distance
traveled (Total_km), linear range (Linear_km), and mean daily distance (Daily_km). These variables
were analyzed using generalized linear models (GLMs) with a Gamma distribution and a log link

function, appropriate for the asymmetric and positive distribution of the data (McCrimmon, 2018).

Hotspots and spatial fidelity — In order to identify areas with greater intensity of space use, Kernel
Density Estimation (KDE) was applied based on the telemetry-derived location data (Silverman, 1986;
Borger et al., 2006; Kie et al., 2010). The resulting density maps allowed the identification of regions
with higher clustering of locations, interpreted as core areas associated with critical behaviors such as

thermoregulation, foraging, or nesting (Cagnacci et al., 2010)

RESULTS
Locations and Temporal Distribution. - After applying the filtering criteria described in the
methodology, a total of 2,264 valid locations for Podocnemis unifilis were obtained over 1,637 days of
monitoring. These locations were distributed among 32 individuals tracked throughout the study. The
number of locations per individual ranged from 11 to 510, with an average of 71.31 £+ 94.77 locations
per individual (Table 1).

The individuals with the highest number of records and monitoring duration were PTT 183643,

with 510 locations over 497 days, and PTT 163009, with 254 locations over 284 days. In contrast,
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individuals PTT 183664, PTT 183655, and PTT 183660 presented the lowest tracking intensities: the
first had 11 locations over 60 days, the second 13 locations over 39 days, and the third 13 locations over
333 days. The mean tracking duration across individuals was 160.59 + 129.99 days, indicating
substantial variation in monitoring effort and temporal coverage. These differences in effort and record
distribution should be considered in the interpretation of spatial metrics and comparative analyses.
There is a moderate and statistically significant positive correlation (p = 0.58; p = 0.0005; Figure 2)
between the two metrics, indicating that individuals monitored for a longer period of time tend to have a

greater number of valid locations recorded throughout the study.
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Figure 2 - Relationship between monitoring duration and number of locations for each tracked

Podocnemis unifilis individual.

103



Table 1 - List of Podocnemis unifilis individuals monitored by satellite telemetry. The table presents the species, the sex of the individual (M for male and F

for female), and the ID (PTT number) code used for satellite monitoring.

Coordenates (Capture)

2 @ 3
=) 3 5 = 4 & ee 3 P
@ 3 = % % £5 = lat long <
. E E £ 5
c — [0
84213 M K2G 158A  13/07/2019 2019-07-13 2019-12-05 145 72 -3,4556 -51,9632 {2019: 72}
84214 M K2G 158A  13/07/2019 2019-07-13 2019-12-29 169 33 -3,4535 -51,9655 {2019: 33}
84216 F K2G 158A  16/10/2019 2020-02-15 2020-03-25 39 33 -3,4235 -51,7271 {2020: 33}
163007 F K2G273C  24/11/2014 2017-07-16 2018-07-18 367 113 -3,3889 -52,0186 {2017: 84, 2018: 29}
163008 F K2G273C  16/07/2017 2017-07-24 2018-12-07 501 64 -3,4724 -51,9221 {2017: 6, 2018: 58}
163009 F K2G273C 17/07/2017 2017-07-17 2018-04-26 283 254 -3,3906 -52,0318 {2017: 156, 2018: 98}
163012 F K2G273C  17/07/2017 2017-08-09 2018-02-03 178 20 -3,3364 -51,9997 {2017: 17, 2018: 3}
163013 F K2G273C  17/07/2017 2017-07-21 2018-08-09 384 122 -3,4863 -51,9572 {2017: 34, 2018: 88}
163016 F K2G273C  26/10/2017 2017-10-29 2018-04-04 157 123 -3,3420 -51,9854 {2017: 33, 2018: 90}
183636 F K2G173A  23/09/2019 2019-10-28 2020-05-08 193 123 -3,5140 -51,7027 {2019: 2, 2020: 121}
183637 M K2G 173A  17/10/2019 2019-11-01 2020-05-12 193 78 -3,5110 -51,7053 {2019: 17, 2020: 61}
183638 F K2G173A  17/10/2019 2020-01-12 2020-03-02 50 23 -3,56147 -51,7210 {2020: 23}
183639 M K2G 173A  17/10/2019 2019-12-07 2020-05-29 174 111 -3,4413 -51,7270 {2019: 5, 2020: 106}
183643 F K2G173A  17/10/2019 2019-10-22 2021-03-02 497 510 -3,4457 -51,9400 {2019: 38, 2020: 400, 2021: 72}
183644 M K2G 173A  19/10/2019 2019-11-27 2020-04-04 129 45 -3,2684 -52,1979 {2019: 6, 2020: 39}
183645 M K2G 173A  19/10/2019 2019-10-29 2020-03-19 142 21 -3,3357 -52,2081 {2019: 2, 2020: 19}
183649 F K2G173A  18/10/2019 2019-10-20 2019-12-16 57 77 -2,7363 -52,0675 {2019: 77}
183650 F K2G173A  20/11/2019 2020-01-17 2020-04-21 95 36 -3,4879 -52,2573 {2020: 36}
183651 F K2G173A  18/11/2019 2019-12-10 2020-03-17 98 60 -3,6205 -52,3539 {2019: 5, 2020: 55}
183653 M K2G 173A  18/11/2019 2019-11-27 2020-03-09 103 51 -3,56532 -52,3886 {2019: 38, 2020: 13}
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Coordenates (Capture)

g = g
g ° s g £3 2 2
a > ': o 2 3 (&) =) o E‘
4 — ©
s! = o 3 5 § = lat long =
2 3 i 3 = 5 3
c — [0
183654 M K2G 173A  29/01/2020 2020-01-30 2020-07-19 171 21 -2,7321 -52,0682 {2020: 21}
183655 M K2G 173A  13/02/2020 2020-02-14 2020-03-24 39 13 -3,3613 -51,7303 {2020: 13}
183658 F K2G 173A  13/02/2020 2020-02-14 2020-04-06 52 18 -3,4029 -51,7474 {2020: 18}
183660 M K2G 173A  13/02/2020 2020-04-17 2021-03-16 333 13 -2,7311 -52,0645 {2020: 4, 2021: 9}
183661 M K2G 173A  23/09/2019 2020-04-20 2020-04-29 9 17 -2,7308 -52,0473 {2020: 17}
183663 F K2G173A  27/04/2020 2020-04-28 2020-05-15 17 24 -3,4557 -51,9640 {2020: 24}
183664 F K2G 173A  27/04/2020 2021-04-23 2021-06-22 60 11 -3,2363 -52,0903 {2021: 11}
183665 F K2G173A  17/04/2021 2020-11-17 2021-01-26 70 22 -3,2121 -52,1670 {2020: 7, 2021: 15}
183666 F K2G 173A  17/11/2020 2020-12-19 2021-04-12 114 43 -3,2862 -52,0727 {2020: 5, 2021: 38}
183671 F K2G173A  28/06/2021 2021-10-21 2022-01-07 78 29 -3,2219 -52,1845 {2021: 18, 2022: 11}
183673 F K2G173A  13/07/2019 2021-10-21 2022-01-07 78 24 -3,2841 -52,0871 {2021: 18, 2022: 6}
183674 F K2G173A  19/07/2019 2019-11-11 2020-04-11 152 78 -3,4321 -51,9430 {2019: 5, 2020: 73}
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Directional Structure and Spatial Variability in Movement — For males, the mean azimuth
was 103.13°, with a circular standard deviation of 136.12°. The Rayleigh test did not indicate statistical
significance (R = 0.0595; p = 0.1936), suggesting the absence of a predominant direction (Figure 3).
During the low-water period, the males presented a mean orientation of 119.34° (SD = 137.15°), also
without significance (R = 0.0570; p = 0.2693) (Figure 3).

In high water, the mean was 53.64° (SD = 113.43°), equally not significant (R = 0.1409; p =
0.3050), reinforcing the pattern of high seasonal directional dispersion among males (Figure 3). For
females, the overall mean azimuth was 80.22°, with a circular standard deviation of 149.67°. The
Rayleigh test was also not significant (R = 0.0330; p = 0.1434), indicating widely distributed movement
and no predominant orientation trend (Figure 3). In low water, the mean was 79.25° (SD = 155.00°; R =
0.0257 and p = 0.3356). Comparisons between males and females in both low water (W = 3.4771, df =
2, p =0.1758) and high water (W = 0.27084, df = 2, p = 0.8733) were non-significant, indicating similar
movement patterns between the sexes. Similarly, within each sex, no seasonal differences were
observed: for females (W = 1.3836, df = 2, p-value = 0.5007) and for males (W = 1.9026, df = 2, p =

0.3862) (Figure 4; Table 2).
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Figure 3 - Directional distribution (azimuth) of successive displacements of Podocnemis unifilis

in the Xingu River, Brazil, according to sex and hydrological season.

Table 2 - Descriptive statistics of the orientation of Podocnemis unifilis displacements in the

Mean Azimuth

Group ©) Circular SD (°) R p-value
Males (overall) 103.13° 136.12° 0.0595 0.1936
Males (low-water) 119.34° 137.15° 0.0570 0.2693
Males (high-water) 53.64° 113.43° 0.1409 0.3050
Females (overall) 80.22° 149.67° 0.0330 0.1434
Females (low-water) 79.25° 155.00° 0.0257 0.3356
Comparison Season Factor tested W-statistic df
Male vs Female Low-water Sex 3.4771 2
(Low-water)
Male vs Female .
(High-water) High-water Sex 0.27084 2
Females (seasonal) All sectors Season 1,3836 2
(Females)

Xingu River, Brazil, based on azimuths between successive locations.
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When considering the river sectors, the results indicated subtle variations in average
displacement patterns. In the Intermediate sector, the mean azimuth was 101.41°, with an SD of 142.92°
and a non-significant Rayleigh test (R = 0.0446; p = 0.0775). The Upstream sector had a similar mean
of 102.15°, with greater dispersion (SD = 168.98°), and no significance (R =0.0129; p = 0.8696).

In the downstream sector, a distinct pattern was observed: the mean azimuth was 46.14°, with a
standard deviation of 102.45°, and the Rayleigh test indicated significant directional orientation (R =
0.2022; p = 0.0061), suggesting that the displacements in this sector were more directionally
concentrated (Figure 4).

Despite the visual differences observed in the average directions and amplitudes of dispersion
between the sectors of the Xingu River, differences were observed only between the Upstream and
Intermediate sectors (W = 1.3612; df = 2; p = 0.5063). On the other hand, the comparisons between
Amount and Downstream (W = 8.8815; df = 2; p = 0.0118) and between Intermediate and Downstream

(W =7.1168; df = 2; p = 0.0285) were not significant (Table 3).
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Figure 4 - Directional distribution (azimuth) of successive displacements of Podocnemis unifilis
in the Xingu River, Brazil, according to the longitudinal sector of the river and the sex of the

individuals.

Table 3 - Descriptive statistics of the orientation of the displacements of Podocnemis unifilis by
sector of the Xingu River (Upstream, Midstream and Downstream) And paired comparisons
between the sectors based on the Mardia—Watson—Wheeler test, with the respective values of the

W statistic, degrees of freedom (df) and p-values.

River Sector Mean azimuth (°) Circular SD (°) Rayleigh R
Midstream 101.41 142.92 0.0446
Upstream 102.15 168.98 0.0129

Downstream 46.14 102.45 0.2022

Comparison W-statistic df p-value

Upstream vs. Midstream 1.3612 0.5063
Upstream vs. Downstream 8.8815 2.0 0.0118
Midstream vs. Downstream 7.1168 0.0285

In all the groups analyzed, movements were not significantly oriented toward the nearest
river beaches. No combination of sex, river sector, and hydrological season showed p-values
below the significance threshold (p < 0.05), indicating no preferential orientation toward the

expected azimuth (Figure 5; Table 4).
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In the Upstream sector, females during the low-water season had a mean movement
direction of 114.46°, while the expected direction toward the nearest beach was 156.22°. The V-
test statistic was V = 8.37, with p = 0.259. During the high-water season, the observed mean
direction was 335.87° (Expected = 135.29°; V = -8.53; p = 0.730; Figure 5; Table 4).

In the Midstream sector, females showed a mean direction of 106.74° during high water
(Expected = 191.62°; V = 4.34; p = 0.394), and 326.27° during low water (Expected = 172.21°;
V =-7.57; p = 0.690). Among males, results were likewise not significant, with p-values > 0.25
(Figure 5; Table 4).

In the Downstream sector, where beaches are spatially closer, females during the low-
water season had a mean movement direction of 37.28°, compared to the expected direction of
136.30° (V =-2.63; p = 0.665). Males, monitored only during the high-water season, had a mean
direction of 63.08° (Expected = 136.81°; V = 3.46; p = 0.238). None of these values reached

statistical significance (Figure 5; Table 4).
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Figure 5 - Directional alignment of Podocnemis unifilis movements in relation to the nearest

river beach, based on group-level V-tests.

Table 4 - V-test results evaluating movement orientation of Podocnemis unifilis individuals

toward the nearest river beach, grouped by sex, river sector, and hydrological season.
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Group Mean_Cgbserved Mean_onpected Nearest Beach V _ p-

(°) (°) statistic value

F - Midstream - High-water 106.7 191.6 Arapuja (PraiaDo 514 394
Arapuja)

F - Midstream - Low-water 326.2 172.2 Arapuja (PraiaDo 7 566 6gp
Arapuja)

F - Downstream - Low-water 37.2 136.3 Pitanguinha -2.628 0.665

F - Upstream- High-water 335.8 135.2 Altamira (Lago g 508 739
Da Olaria)

F - Upstream - Low-water 1145 156.2 Altamira (Lago g 075 559
Da Olaria)

. . Furo Trindade

M - Midstream - High-water 214.1 225.5 (llha Do Pirulito) 4700 0.310

M - Midstream - Low-water 91.6 224.2 Arapuja (PraiaDo 4 gog 934
Arapuja)

M - Downstream - High-water 68.7 136.8 Pitanguinha 3461 0.238

M - Upstream- High-water 85.2 127.1 Altamira (Lago 755 ¢ 450
Da Olaria)

M - Upstream - Low-water 152.8 104.9 Altamira (!_ago 4541  0.164
Da Olaria)

Movement Patterns and Spatial Use - Individuals of Podocnemis unifilis traveled an
average total distance of 53.8 km (SD = 64.3), with values ranging widely from 1.8 km to 304.5
km throughout the monitoring period (Table 5). Although some individuals registered
cumulative displacements exceeding 300 km, their maximum linear ranges were considerably
smaller, averaging 9.8 km with a maximum of 25.0 km, suggesting movement predominantly
restricted to localized river stretches. One particular female (ID 163009) traveled over 300 km in
total but remained within a ~23 km stretch of the river, repeatedly moving within that area. In
general, long-distance movements were rare, and most individuals exhibited relatively localized
spatial use patterns.

On average, females traveled approximately 63 km over the monitoring period, while
males traveled ~35 km, with mean daily movement rates of ~0.42 km/day and ~0.34 km/day,
respectively. However, these differences were not statistically significant after controlling for
monitoring effort, and no effect of sex was detected on total distance traveled (GLM Gamma, p
=0.798) or on linear range (GLM Gamma, p = 0.918).

Females in the Midstream sector during the dry season traveled on average 109.8 km (SD
= 49.9), with daily movements of approximately 0.4 km/day over monitoring periods lasting up
to 501 days. In the Upstream sector during the dry season, females also showed extensive
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movements (mean = 74.6 km, maximum = 304.1 km). In contrast, females in the Downstream
sector during the dry season traveled on average only 18.7 km, with a daily movement rate of
~0.3 km/day. Males showed similar patterns: for example, males in the Downstream sector
during the dry season traveled an average of 13.4 km, with a daily mean of ~0.2 km/day.
Nevertheless, similar to the pattern observed by sex, sector effects were not statistically
significant in the GLM (p = 0.109 for Downstream; p = 0.713 for Upstream). On the other hand,
hydrological season (Season) showed a marginal effect in the model for total distance, with an
estimated twofold increase in expected distance during the dry season (coefficient = 0.70, p =
0.094, 95% CI = [-0.12, 1.52]). Although this value did not reach statistical significance, the
observed variation may be partially associated with differences in monitoring duration. For the
linear range (Linear_km), no predictor variable (sex, sector, or season) had a statistically

significant effect (all p > 0.35; Table 6).
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Table 5 - Descriptive statistics of movement metrics for Podocnemis unifilis by sex, river sector (Upstream, Midstream, Downstream), and hydrological

season (Low-water and High-water).

3 3 = & c < c x c
g o g & S 3 £ & 8 7 £ & 3 3
% > 7 n «w e = e | S n
- c > o] > > S | | | I = | | e I
=) S 3 © 3 @ [ = = = £ g c = | c
Sex 5 & | S o | °, £ = X X X L = = g =
& ) g < g 2 — = = —! L < = . | >
% 3 S e 5 = s & 2 = e £ 3 a
z = o © [ = = 5 - 3 - o)
= = =
Midstream  High-water 40,0 15,8 18,0 52,0 16,6 14,0 18 32,6 11,5 12,0 0,4 25,0 0,6 0,8
Midstream Low-water  345,6 165,4 152,0 501,0 109,8 49,9 36,7 1575 11,0 5,9 51 17,6 0,4 0,2
F Downstream Low-water 57,0 Not calculated 57,0 57,0 18,7 Notcalculated 18,7 18,7 8,7 Notcalculated 8,7 8,7 0,3 Not calculated
Upstream  High-water 78,0 25,5 60,0 96,0 11,9 0,5 115 123 4,0 1,6 2,9 51 0,2 0,1
Upstream  Low-water  158,7 103,5 70,0 367,0 74,6 97,0 34 3041 123 7,0 2,8 22,4 0,5 04
Downstream High-water 39,0 Not calculated 39,0 39,0 44,4 Notcalculated 44,4 444 20,6  Notcalculated 20,6 20,6 1,1  Not calculated
Midstream Low-water  170,5 19,8 145,0 193,0 53,6 39,8 11,1 99,3 10,0 45 6,4 16,2 0,3 0,2
Downstream High-water  171,0 162,0 9,0 333,0 13,4 7,2 50 17,6 71 49 2,7 12,3 0,2 0,3
Upstream  Low-water  125,3 19,4 104,0 142,0 30,1 17,6 10,6 44,7 11,6 6,9 3,8 16,9 0,2 0,1
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Table 6 - Results of generalized linear models (GLMs) with Gamma distribution and log link
function evaluating the effects of sex, river sector, hydrological season, and tracking effort on

movement metrics of Podocnemis unifilis.

Predictor Coef. Std.Err. z P>|z| [0.025 0.975] Response
Intercept 2,85 0,38 7,41 0,00 2,09 3,60 Total_km
C(Sex)[T.M] -0,09 0,36 -0,26 0,80 -0,79 0,61 Total_km
C(Sector)[T.Jusante] -0,87 0,54 -1,60 0,11 -1,93 0,19 Total_km
C(Sector)[T.Montante] -0,13 0,37 -0,37 0,71 -0,85 0,58 Total_km
C(Season)[T.Low-water] 0,70 0,42 1,67 0,09 -0,12 1,52 Total_km
Tracking_days 0,00 0,00 2,59 0,01 0,00 0,01 Total_km
Intercept 2,30 0,30 7,70 0,00 1,71 2,88 Linear_km
C(Sex)[T.M] 0,06 0,28 0,22 0,82 -0,48 0,60 Linear_km
C(Sector)[T.Jusante] -0,45 0,42 -1,06 0,29 -1,27 0,38 Linear_km
C(Sector)[T.Montante] -0,05 0,28 -0,17 0,87 -0,60 0,51 Linear_km
C(Season)[T.Low-water] 0,04 0,33 0,13 0,89 -0,59 0,68 Linear_km
Tracking_days 0,00 0,00 0,54 0,59 0,00 0,00 Linear_km
Intercept -0,34 0,41 -0,82 0,41 -1,14 0,47 Daily_km
C(Sex)[T.M] -0,32 0,38 -0,84 0,40 -1,06 0,42 Daily_km
C(Sector)[T.Jusante] -0,66 0,58 -1,13 0,26 -1,79 0,48 Daily_km
C(Sector)[T.Montante] -0,37 0,39 -0,94 0,35 -1,13 0,40 Daily_km
C(Season)[T.Low-water] 0,14 0,45 0,31 0,76 -0,74 1,02 Daily_km
Tracking_days 0,00 0,00 -1,60 0,11 -0,01 0,00 Daily_km

During the low-water period, spatial distribution was characterized by high-density cores
concentrated in restricted areas, mostly associated with stable and predictable environments such
as beaches and exposed riverbanks. These cores, observed mainly in Juncal and Peteregu
(downstream; Figure 6) Pimental and Rabecas Channel (midstream; Figure 7), and the Palhau
region (upstream; Figure 8), suggest spatial fidelity and relatively sedentary behavior during this
period.

In contrast, the high-water season was marked by a notable expansion in the area of use,
with increased spatial amplitude and dispersion of density cores, reflecting greater mobility and
the exploitation of temporarily accessible habitats. This dynamic was most pronounced in the
midstream (Figure 6) and upstream (Figure 7) sections, where seasonal flooding enhanced

connectivity among coves, lateral bays, and inundated margins. New usage cores were recorded
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in Murituba, Verissimo, Batata, and Cardo (downstream; Figure 6), Boca da Bacaba (midstream;

Figure 7), and in additional floodable compartments in the Palhau region (upstream; Figure 8).
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Figure 6 - Kernel Density Estimation (KDE) of Podocnemis unifilis spatial use in the downstream section of the Xingu River during low-water (left)

and high-water (right) seasons.
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DISCUSSION

The results of this study substantially broaden current knowledge on the movement
patterns of Podocnemis unifilis, especially regarding spatial fidelity and behavioural resilience
within a hydrologically fragmented context such as the Xingu River, and can be regarded as a
milestone in the species’ spatial-ecology research. In light of our findings, we emphasise that the
seasonal movements of P. unifilis are tightly linked to the hydrological regime of Amazonian
rivers, corroborating observations that flood-pulse dynamics in tropical floodplain ecosystems
strongly influence turtle behaviour, whereby individuals adjust their displacements and habitat
use in response to seasonal shifts in climate and water level (Gibbons 1986;
Bodie & Semlitsch 2000; Moreira et al. 2011; Simoncini et al. 2022; Rosas et al. 2022). The
annual hydrological cycle, alternating between flood and drought periods, generates a dynamic
and complex habitat mosaic. During high water, flooded forests and extensive floodplains
predominate, whereas permanent water bodies and exposed beaches prevail in the low-water
season (Junk et al. 1989; Alcantara et al. 2013).

In our study, we found that during the low-water period the turtles remained concentrated
near nesting sites and main channels, whereas in the rainy season, with rising water levels, they
moved more intensely, although without venturing far and covering relatively short linear
distances that rarely exceeded 25 km. They exhibited strong spatial fidelity, particularly to areas
such as Juncal and Peterecu beaches (Downstream sector), the Pimental and Rabecas channels
(Midstream sector) and the Palhau region (Upstream sector). This pattern aligns with studies
from other Amazonian tributaries in which P. unifilis showed short movements and high fidelity
to core areas, concentrating near nesting beaches in the dry season and accessing flooded forests
and temporary waterbodies in the wet season (Naveda-Rodriguez etal. 2018;
Ponce de Ledo et al. 2019; Hinderaker 2021). Thus, for P. unifilis, the seasonal pulse acts more
as a catalyst for localised displacements than as a trigger for long-distance migrations, in contrast
with larger species that may travel great distances in response to seasonal changes

(Moreira et al. 2011; Fachin-Teran et al. 2006).
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Despite expectations of wider movements due to increased habitat availability during the
flood season, as shown by Naveda-Rodriguez et al. (2018), Ponce de Ledo et al. (2019) and
Hinderaker (2021), our results revealed only modest spatial expansion. This sedentary strategy,
previously characterised as “short-distance migrant” for the species, reflects a strong attachment
to critical habitats such as nesting beaches and nearby lagoons, and has been reported for
populations in Ecuador and Trombetas Biological Reserve, Brazil
(Naveda-Rodriguez et al. 2018; Ponce de Ledo et al. 2019) as well as for Podocnemis lewyana in
Colombia, which maintained restricted home ranges and repeatedly reused shelters between
seasons even in areas with  high  connectivity among floodplain  lakes
(Forero-Medina et al. 2021). Similarly, Kinosternon leucostomum and Phrynops geoffroanus
remained faithful to specific floodplain areas and channels despite greater habitat availability in
the wet season, preferring predictable sites with suitable substrate for digging or
thermoregulation (Ernst & Lovich 2009).

The behaviour of P. unifilis in the Xingu therefore exemplifies an ecological syndrome
common to tropical-river turtles, characterised by localised movement, habitat selectivity and
repeated use of critical environmental cores throughout the hydrological cycle
(Pritchard & Trebbau 1984; Moll & Moll 2004). Studies indicate that P. unifilis preferentially
exploits backwaters, streams, floodplain lagoons and flooded-forest areas adjacent to the river
during high water rather than undertaking extended upstream or downstream migrations
(Pritchard & Trebbau 1984; Pefialoza et al. 2013). We cannot discount the influence of
hydrological fragmentation, which restricts longitudinal movements along the river. This
behaviour contrasts with that of the larger-bodied Amazon River turtle P. expansa, which can
move tens to hundreds of kilometres between flood-season foraging areas and dry-season nesting
sites (Ferrara et al. 2013; Forero-Medina et al. 2019). P. unifilis exhibits more localised space
use, possibly owing to its smaller body size and its ability to shelter and forage in shallow
habitats available early in the flood period (Moll & Moll 2004; Fachin-Teran et al. 2006;

Vogt 2008; Hinderaker 2021).
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We cannot rule out alternative strategies within the basin, such as individuals remaining
in isolated lagoons and nesting in situ, underscoring behavioural plasticity in relation to nesting
sites (Ferreira Junior & Castro 2010; Pignati et al. 2013). Such plasticity, documented elsewhere
in Amazonia, may be an adaptive response to the high environmental unpredictability of the
flood-pulse system (Fachin-Teran et al. 2006). Notably, P. unifilis typically initiates reproductive
movements slightly earlier than P. expansa, with studies in the middle Amazon reporting that
turtles move into flooded forests at the onset of the flood about a month before the larger species,
taking advantage of small streams and newly inundated areas (Ferreira Junior & Castro 2010;
Ponce de Ledo et al. 2019).

Although males showed more directional movements, statistical analyses did not confirm
significant sex-based differences, supporting the idea that male movement is concentrated
(Naveda-Rodriguez et al. 2018). Our findings therefore highlight that floodplain areas are as
critical as nesting beaches for the life cycle of P. unifilis (Ponce de Le&o etal. 2019;
Hinderaker 2021). Orientation tests (Rayleigh and V-test) indicated an absence of significant
alignment of movements towards the nearest beaches, and no group analysed by sex, sector or
season exhibited preferential directionality. This suggests that P. unifilis adopts opportunistic
space-use strategies depending on prior location and immediate habitat availability rather than
undertaking systematic directional movements to nesting beaches, a behavioural pattern
described as “nesting excursions” (Morreale et al. 1984; Gibbons et al. 1990) and similarly not
detected by Naveda-Rodriguez et al. (2018) and Ponce de Ledo et al. (2019). Nevertheless, the
high spatial fidelity observed aligns with Benhamous (2011) concept of “essential use areas”,
whereby individuals of territorial or highly philopatric species consistently reuse the same sites
over time.

The absence of significant effects of sex, sector and season on movement metrics (total
distance, linear displacement and daily displacement) identified by Gamma-GLM models
underscores the stability of P. unifilis spatial behaviour across hydrological conditions. Although

higher means were observed for females and during the dry season, these tendencies were not
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statistically confirmed, indicating high intra-group variability and possible influences of
unmodelled individual or environmental factors (Spiegel et al. 2017).

The lack of differentiation among river sectors in terms of displacement, except for the
downstream sector, which exhibited stronger directional concentration, may relate to
geomorphological conditions and the accessibility of preferred environments such as beaches
and backwater channels (Kalacska et al. 2019). The downstream sector was the only one to show
statistically significant spatial orientation, perhaps due to well-defined natural corridors or
proximity to protected areas such as the REVIS Tabuleiro do Embaubal that could act as spatial
attractors  (Erickson et al. 2020). Upstream and midstream, forced environmental
homogenisation, such as in hydraulically regulated reaches, can constrain movement possibilities
and reduce behavioural plasticity (Alho & Padua 1982; Barcenas-Garcia et al. 2022a,b).

Local geomorphology further influences movement patterns. The midstream sector,
characterised by island channels, rapids and abrupt depth variations, may restrict displacements
at certain times of year, a factor not fully captured in this study (Fearnside 2015). Such features
create a mosaic of micro-habitats that pose natural barriers to medium-sized turtles
(Kalacska et al. 2019). In a hydrologically fragmented environment like the Xingu can become
an ecological trap because remaining in degraded or intermittent habitats may threaten
individuals lacking sufficient plasticity to explore new areas (Hale et al., 2016a,b;
Robertson & Blumstein 2019). This is especially critical where reduced flood pulses and
diminished lateral flows have drastically altered connectivity with marginal lakes and seasonal
channels (Fearnside 2015).

Hydrological constraints impose a new spatial arrangement on P. unifilis populations,
which become heavily dependent on remnant water bodies and beaches no longer renewed
annually by river flow. This could intensify intra-specific competition, reduce reproductive
success and compromise long-term population viability (Lapola et al. 2023). Conserving the
longitudinal and lateral connectivity of the Xingu is therefore essential for maintaining

biodiversity and preserving the species’ ecological dynamics.
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The observation that females and males share similar spatial patterns even in distinct
hydrological phases suggests that the species basic ecological requirements can be met within
geographically limited areas. While this promotes occupancy of high-quality sites, it also
increases vulnerability to local impacts. Functional extinction of preferred habitats may trigger
population collapses even without wide dispersal (Erickson et al. 2020). The desaisonalisation
caused by dams can lead to disorientation, reproductive failure and life-cycle disconnection,
particularly in species like P. unifilis that rely on environmental cues to initiate movements or
select nesting areas (Pignati et al. 2013).

It is important to note that telemetry data were obtained using the Argos satellite system,
which, although effective in remote areas, has recognised spatial accuracy limitations for species
with prolonged submersion (Vincent et al. 2002; Costa et al. 2010). Because P. unifilis is
predominantly aquatic, transmission frequency depends on surfacing time, leading to temporal
gaps that may distort true trajectories and hinder detection of preferred orientation
(Patterson et al. 2010; Hooten et al. 2017). Filters such as Douglas-Argos and Local Outlier
Factor improved data quality, yet these methodological limitations were considered when
interpreting orientation patterns.

There was a strong positive correlation between monitoring days and the total number of
valid locations, indicating that individuals tracked longer provided more robust records.
Controlling sampling effort in analytical models was therefore essential to avoid underestimation
of space use for short-tracked individuals (Benhamou 2011; McCrimmon 2018). Although
corrected, residual errors may still affect detection of fine-scale patterns such as orientation to
beaches or micro-seasonal adjustments in activity centres. Positional uncertainty, especially in
dense vegetation, rocky areas with signal reflection or prolonged cloud cover during high water,
may partly explain non-significant results in directional tests.

Future studies could incorporate GPS transmitters with internal loggers that record
high-accuracy locations and transmit via GSM or manual retrieval. Despite greater logistical

demands, this approach has been successful for large river turtles such as Dermatemys mawii and
123



Batagur baska, offering improved resolution for orientation analysis and micro-habitat use
(Plummer et al. 2008).

Hence, our results highlight the urgency of conserving continuous habitat mosaics that
include not only nesting beaches but also marginal lagoons, seasonal channels, backwaters and

riparian forests, all of which are essential for maintaining the spatial functionality of P. unifilis.

CONCLUSIONS

This study demonstrated that the movement patterns of Podocnemis unifilis in the middle
Xingu River are strongly influenced by the seasonality of the hydrological regime. During the
low-water seasons (dry and ebb periods), a high concentration of individuals was observed in
permanent aquatic habitats, particularly in areas such as Juncal and Peterucu (Downstream
sector), Pimental and Rabecas Channel (Midstream sector), and the Palhau region (Upstream
sector). These areas were identified as high-density cores, underscoring a behavioral strategy
aimed at ensuring hydric stability and continuous access to essential resources. Males exhibited
more directional and concentrated movements, prioritizing stable habitats, likely related to their
need for consistent resource availability. Conversely, females displayed broader spatial
dispersion, potentially driven by specific reproductive demands such as selecting elevated
nesting sites to reduce risks of flooding and predation.

During the high-water seasons (flood and flooding periods), the movement patterns
became notably more dispersed, with individuals accessing temporarily inundated habitats such
as floodplains and flooded forests. These environments provide abundant and diverse food
resources and essential refuge areas. Females showed increased spatial dispersion during these
periods, likely due to heightened energetic and nutritional requirements linked to reproduction.
The utilization of multiple habitat types, enabled by seasonal flooding, appears crucial for

females to fulfill their biological needs and successfully reproduce.
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Our analysis also indicated no significant preferential orientation toward specific nesting
beaches, suggesting flexible and opportunistic reproductive strategies that could minimize
predation risk and competition for nesting sites. Such spatial flexibility in nesting behavior
highlights the species adaptive capability to environmental variability and resource availability
fluctuations, typical of the Amazonian ecosystem. Furthermore, variability among individual
turtles in spatial behavior, potentially influenced by previous experience and cognitive abilities,
adds complexity to interpreting movement patterns.

The results emphasize the fundamental role of the hydrological cycle and habitat
connectivity in shaping the spatial ecology and reproductive strategies of P. unifilis. The
ecological impacts observed in different river sectors, particularly the constrained movement in
the Volta Grande region, illustrate the importance of maintaining habitat connectivity to ensure
species survival and ecological resilience.

This study underscores the critical importance of protecting essential habitats, including
permanent aquatic refuges and elevated nesting sites, increasingly threatened by climate change,
damming activities, and anthropogenic pressures. Satellite telemetry and spatial analysis
techniques proved instrumental in identifying core habitat areas and refining conservation
strategies. Expanding and enhancing long-term monitoring efforts using these advanced
technologies will be vital to effectively manage threats and maintain viable populations of P.

unifilis in the rapidly changing landscape of the Xingu River basin.
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Background: Large hydroelectric dams alter river ecosystems and can affect space use by
aquatic species. The Amazonian turtle Podocnemis unifilis, classified as Vulnerable, exhibits site
fidelity and short seasonal movements in natural environments. However, little is known about

its spatial behavior under altered flow conditions. Therefore, this study aimed to estimate the
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home range and movement patterns of P. unifilis in the middle Xingu River following the

implementation of the Belo Monte Hydroelectric Dam.

Methods: Thirty-two adult individuals (both males and females) were monitored via satellite
telemetry (Argos system) in three segments of the Xingu River affected by the dam: upstream,
intermediate (Volta Grande), and downstream. The attached satellite transmitters recorded
periodic geographic positions. Home range areas (95%) and core areas (50%) for each turtle
were estimated using five spatial use density methods: MCP, KDE, AKDE, LoCoH, and
dBBMM. Differences in home range size between sexes, between seasons (high-water vs. low-

water), and among river segments were statistically evaluated (a = 0.05).

Results: Home range areas exhibited wide individual variation. The mean 95% home range was
14.40 + 20.34 km?2 using MCP, 11.91 km? with KDE, 14.58 km? with AKDE, 14.78 km? with
LoCoH, and 1.45 km2 with dBBMM. The 50% core areas were smaller on average: 1.77 km?2
(MCP), 3.49 km2 (KDE), 2.56 km? (AKDE), 2.97 km? (LoCoH), and 0.26 km2 (dBBMM). There
were no significant differences in home range size between males and females or between dry
and rainy seasons. However, differences emerged among river segments: turtles in the upstream
reservoir had the largest home ranges, those in the Volta Grande had the smallest, and
individuals in the downstream stretch showed intermediate values. Most individuals remained
within the same spatial domain throughout the year, making only local movements without

expanding their home range.

Conclusions: P. unifilis demonstrated the ability to persist under these altered conditions,
maintaining a restricted area of use and localized movements. However, the spatial limitation
observed especially in the Volta Grande highlights the species vulnerability to habitat
fragmentation. This underscores the importance of maintaining aquatic connectivity and natural

hydrological variability in the Xingu River to ensure suitable habitats for the species.
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BACKGROUND

The concept of home range in spatial ecology refers to the area in which an individual
performs its daily activities such as foraging, reproduction, and resting (Burt, 1943; Okubo et al.,
2001; Kie et al., 2010; Powell & Mitchell, 2012). The size and shape of the home range vary
according to a combination of biotic and abiotic factors (Lagarde et al., 2003). Among the biotic
factors, age, sex, reproductive stage, diet, and food availability stand out (Burt, 1943; Bodie &
Semlitsch, 2000; Powell & Mitchell, 2012; Silveria et al., 2022; Enriquez-Mercado et al., 2024).
Abiotic factors such as temperature, precipitation, water availability, habitat structure, and
presence of microhabitats also affect the home range by conditioning the accessibility and
quality of resources (Cagle, 1944; Ponce de Leao et al., 2019; Auge et al., 2023). In addition,
extrinsic elements such as environmental quality, deforestation, and degradation of water bodies
may restrict or alter the space used by organisms (Saunders et al., 1991; Rizkalla & Swihart,
2006; Serrano et al., 2020; Barcenas-Garcia et al., 2022).

Therefore, understanding a species spatial ecology is essential for its conservation, and in
the case of threatened species, this becomes even more relevant, as it provides scientific support
for designing effective management strategies tailored to the species needs (Klemens, 2000;
Collinge, 2001; Cantrell et al., 2010; Fletcher et al., 2018; Fletcher & Fortin, 2018; Silveria et
al., 2022). In other words, knowledge of movement patterns, space use, and site fidelity allows
the identification of critical habitats for survival and reproduction, such as feeding, shelter, and
nesting areas (Collinge, 1994; Moll & Moll, 2004; Escalona & Vogt, 2008; Norris et al., 2011).
Furthermore, spatial analysis enables the assessment of how environmental changes such as
habitat fragmentation, dam construction, loss of connectivity between wetlands, or alteration of

the hydrological pulse, can disrupt natural movement cycles, affect resource availability, and
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increase population vulnerability (Perry & Garland, 2002; Berry et al., 2005; Roe et al., 2009;
Runge et al., 2014; Kays et al., 2015; Allen et al., 2016; Tucker et al., 2018).

Turtles of the family Podocnemididae have life cycles strongly influenced by the
hydrological cycles of the Amazonian rivers (Fachin-Teran et al., 2006; De Souza-Alcantara et
al., 2013; Pignati et al., 2013; Eisemberg et al., 2016; Alzate-Estrada et al., 2020; Erickson et
al., 2020; Hinderaker, 2021; Ataides et al., 2021; Simoncini et al., 2022). Species of this family
use rivers and floodplains seasonally, moving into flooded forests during high-water periods
(flood and rise) in search of food and shelter, and returning to the main river channels during
low-water periods to concentrate in deeper pools or access nesting beaches (Alho & Padua,
1982; Vogt, 2008; Fachin-Teran et al., 1995; Ferrara et al., 2016). Several species of the genus
Podocnemis undertake long reproductive migrations, traveling tens to hundreds of kilometers to
reach suitable nesting sites (Mogollones et al., 2010; Carneiro & Pezzuti, 2015). Podocnemis
expansa (Amazon River turtle), the largest species in the family, is capable of covering large
distances. Individuals tracked via satellite in the Xingu River exhibited average displacements of
approximately 401 km, with a maximum recorded distance of 725 km during the post-nesting
period (Carneiro & Pezzuti, 2015).

Even smaller species show significant movement. Female Podocnemis sextuberculata
(iacd), tracked via radio telemetry, traveled between ~16 and 44 km linearly during migrations
from streams to nesting beaches, while males remained mostly resident in the same river
segment (Fachin-Teran et al., 2006). Podocnemis lewyana, endemic to the Magdalena River
(Colombia), generally exhibits a restricted linear range (<1 km for 85% of individuals), but
males were observed moving up to 5 km, and reproductive females averaged ~14 km during the
dry season to reach nesting beaches (Alzate-Estrada et al., 2020). These examples demonstrate
that some Podocnemididae species can be considered facultative seasonal migrants, ranging from
short to long distances, remaining resident in a limited area for most of the year, but undertaking
extensive movements when necessary (Naveda-Rodriguez et al., 2018; Alzate-Estrada et al.,

2020).
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The yellow-spotted river turtle, Podocnemis unifilis (Testudines: Podocnemididae), is a
medium-sized species widely distributed throughout the Amazon basin and adjacent rivers. It
plays a significant ecological role by consuming fruits, seeds, and aquatic invertebrates
(Balensiefer, 2003; Vogt, 2008; Ferrara et al., 2016; Garcez et al., 2020). Culturally and
economically, it is also important to riverine communities, historically subjected to high hunting
pressure and egg collection (Pezzuti et al., 2010; Faria & Malvasio, 2018; Pefialoza et al., 2013;
Pantoja-Lima et al., 2014; Felix-Silva et al., 2018). As a result, P. unifilis is classified as a
Vulnerable species in conservation listings, with population declines reported in several regions
(Rhodin et al., 2018; MMA, 2022; IUCN, 2024).

Nonetheless, until recently, little was known about its spatial ecology and movement
patterns, as most studies focused on natural history, reproduction, or genetics, or were based on
sparse mark-recapture data (Vogt, 2008; Escalona et al., 2009; Trebbau & Pritchard, 2016;
Eisemberg et al., 2017). More robust studies using radio telemetry and GPS have only begun to
address this gap in recent years. For example, Naveda-Rodriguez et al. (2018) tracked 63
individuals using VHF telemetry in Ecuador, providing the first home range estimates for the
species—approximately 5.2 km? on average—with a mean linear range of ~16 km, indicating
relatively short seasonal local movements. In Brazil, Ponce de Ledo et al. (2019) monitored
individuals in the Trombetas River Biological Reserve (Pard) and found similar home range
sizes, with no marked seasonal differences, suggesting that P. unifilis uses distinct seasonal
habitats (flooded forest versus riverbed) within the same general annual use area. These studies
suggest that although P. unifilis does not engage in long-range migrations like P. expansa, it
displays sufficient movement plasticity to adjust to the water pulse, thus being considered a
short-distance migrator (Naveda-Rodriguez et al., 2018).

Anthropogenic alterations to the natural hydrological regime can, therefore, significantly
impact the spatial ecology of P. unifilis. The construction of large hydroelectric dams in the
Amazon modifies flood and drought patterns, creates upstream reservoirs, and reduces

downstream flow (Castello & Macedo, 2016; Norris et al., 2018a; Barcenas-Garcia et al., 2022).
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These changes can eliminate or flood nesting beaches, alter connectivity between dry and wet
season habitats, and potentially force adjustments in turtle movement patterns (Norris et al.,
2018a).

This study was conducted exclusively within a post-dam context, as the Belo Monte
Hydroelectric Plant (UHE Belo Monte) began full operation in 2016, permanently altering the
hydrology and ecological connectivity of the Xingu River. Although the immediate impacts of
dam construction and reservoir filling have been widely addressed in the scientific literature
(e.g., Castello & Macedo, 2016; Fearnside, 2017; Norris et al., 2018a; Pezzuti et al., 2024), there
remains a gap regarding the medium- and long-term effects on the behavior and space use of
aquatic species such as turtles. Based on this, the present research adopts a prospective approach:
rather than merely documenting well-known alterations, it aims to understand how Podocnemis
unifilis is currently using space under the new hydrosocial regime and what movement patterns
are emerging following the stabilization of the plant’s operational regime.

Thus, this study represents the first comprehensive assessment of the spatial ecology of
Podocnemis unifilis in the Xingu River following the hydrological changes caused by the Belo
Monte Hydroelectric Plant. Using ARGOS satellite telemetry data and multiple home range
estimation methods, we aimed to understand how individuals of this species use space under
altered environmental conditions. Specifically, our objectives were: (1) to evaluate the influence
of biological (sex), hydrological (season), spatial (river sector), and sampling effort (monitoring
days and number of locations) on home range size estimates across individuals; and (2) to
compare the performance, consistency, and sensitivity of different home range estimators (MCP,
KDE, LoCoH, AKDE, dBBMM), assessing their agreement and relative deviations under

varying ecological conditions.

METHODS
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Study area — The study was conducted along the Xingu River in the state of Para, Brazil,
encompassing three distinct sections based on their longitudinal position relative to the Belo
Monte/Pimental Hydroelectric Complex: upstream, midstream, and downstream (Figure 1). The
upstream region comprises the upper course of the Xingu River, located above the Pimental dam,
including areas within the main reservoir and its immediate tributaries, near the city of Altamira.
The midstream section is located between the Pimental dam and the main powerhouse of the
Belo Monte Hydroelectric Plant. The downstream region extends below the powerhouse,
covering the Volta Grande do Xingu up to the Tabuleiro do Embaubal Wildlife Reserve (REVIS)
(Figure 1). The climate in the Xingu River basin is classified as humid tropical, with a rainy
season coinciding with the river’s rising and flooding period (approximately December to April),
and a predominant dry season between June and November (ebb and dry phases), resulting in a
well-defined and seasonal hydrological regime (ANA, 2013; IBGE, 2020).

The Xingu River is one of the largest tributaries of the Amazon and is classified as a
clearwater river in the Amazonian typology (Sioli, 1985). It extends approximately 2,500 km and
drains a basin of about 510,000 km?, encompassing transitional areas between the Cerrado and
Amazon biomes (Goulding et al., 2003). Its hydrography is characterized by a high degree of
geomorphological heterogeneity, with stretches of floodplain interspersed with rapids,
anastomosing channels, islands, and varzea areas, particularly prominent in the Volta Grande
region (Sawakuchi et al., 2015). This geomorphological diversity contributes to the formation of
various aquatic and riparian microhabitats, promoting high biological diversity (Kalacska et al.,
2019). Due to its ecological complexity and high conservation value, the Xingu River basin has
been recognized as one of the most important for the conservation of aquatic biodiversity in the
Brazilian Amazon. It has been the focus of specific public policies for species conservation, such
as the National Action Plan for the Conservation of Endemic and Threatened Species of the
Lower and Middle Xingu Region (PAN Baixo e Médio Xingu) (ICMBio, 2012 — Ordinance No.

16/2012).
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Figure 1 - Map of the Xingu River stretch in Pard, Brazil, indicating the study area of 32
individuals monitored between 2017 and 2022. The distribution of the animals is shown between
the upstream portion (above the Belo Monte dam, including part of the reservoir) and the

downstream portion (Volta Grande do Xingu, below the dam).

Data collection and monitoring. Individuals were captured using various methods (Balestra et
al., 2016) during multiple field campaigns along the Xingu River, as part of the Turtle
Conservation and Management Program of the Belo Monte Hydroelectric Power Plant. Each
turtle was fitted with a satellite transmitter attached to the posterior portion of the carapace using
non-toxic epoxy resin (Figure 2). The transmitters (models Kiwisat K2G 158A, K2G 273C, and
K2G 173A) were programmed to record geographic positions at regular intervals of 2 to 3 hours,
storing each fix with date, time, and coordinates (latitude/longitude, WGS84 datum). Locations
were transmitted via satellite uplink (Argos system) whenever the animal surfaced, allowing for
remote tracking without the need for frequent recapture.

The temporal segmentation of the analyses was based on the hydrological dynamics of

the Xingu River, which comprises four seasonal phases: Flooding (Dec—Feb), Flooded (Feb—
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Apr), Ebb (May-Jul), and Dry (Aug—Oct), as described by De Souza Alcantara et al. (2013) and
Ribeiro et al. (2022). For analytical purposes, these phases were grouped into two broader
periods: high-water season (Jan—Jun), when the river level rises or reaches its peak, and low-
water season (Jul-Dec), when the water level recedes, exposing sandbanks and beaches that
serve as nesting sites (Camargo et al., 2015; Dos Santos Franco et al., 2015).

To maintain spatial independence, each individual was assigned to a single river sector
(Upstream, Midstream, or Downstream) based on the sector with the highest number of location
records. Summary metrics such as the total number of locations, monitoring duration (days), and
point density (locations/day) were calculated for each individual and aggregated by sex, season,
and river sector. All analyses were performed using R software, version 4.4.1 (R Core Team,

2024).

Figure 2 - Installation of satellite transmitters (Kiwisat PTT K2G 158A, K2G 273C or K2G
173A). (A) Female Podocnemis unifilis being handled after transmitter installation. (B) Female
Podocnemis unifilis being released with newly installed transmitter. (C and D) Male Podocnemis

unifilis. Image: Norte Energia S.A.
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Data analysis. Data filtering - Initially, a preliminary evaluation of the collected data was
performed, during which anomalous signals were excluded. As part of this initial assessment,
manual filtering of locations was conducted, removing those clearly incorrect or biologically
unfeasible (e.g., urban areas, roads, or locations incompatible with the ecology and typical
behavior of the studied species).

Additionally, all locations classified as Class Z were excluded, as these are known to
compromise the accuracy and reliability of results due to their low positional quality (Vincent et
al., 2002; Costa et al., 2010; Patterson et al., 2010; ARGOS, 2016; Hooten et al., 2017).

Periods of signal discontinuity, characterized by intervals greater than 3 days without
detections, were handled by separating the data segments into independent records, following the
methodology propose by Douglas et al. (2012).

Subsequently, we employed the Douglas-Argos Filter (DAF), which considers criteria
such as maximum distance between consecutive points and turning angles, aiming to eliminate
trajectories incompatible with the natural movement behavior of the animals (Douglas et al.,
2012). In the absence of data on the speed of Podocnemis unifilis, a conservative upper threshold
of 0.5 m/s (1.8 km/h) based on studies carried out with phylogenetically close freshwater turtles
(Freitas et al., 2008; Shimada et al., 2012).

Complementing the filtering process, we also applied a statistical approach using the
Local QOutlier Factor (LOF) method, which identifies outlier points based on the local density of
data (Breunig et al., 2000; Aggarwal, 2015). Points identified as outliers by this method were

also removed.

Home Range. The data were analyzed using multiple home range estimation methods,
considering 95% isopleths (total area) and 50% isopleths (core use area). Traditional methods
that assume independence among locations were applied: MCP (Minimum Convex Polygon;

Mohr, 1947) and KDE (Kernel Density Estimation; Worton, 1989). In addition, a method that
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accounts for the temporal autocorrelation of locations was employed—AKDE (Autocorrelated
Kernel Density Estimation; Calabrese et al., 2016).

The second approach was the Dynamic Brownian Bridge Movement Model (dBBMM,;
Kranstauber et al., 2012), a trajectory-based method that also incorporates temporal
autocorrelation but does so in a non-parametric, localized manner.

Additionally, the Local Convex Hull (LoCoH) method was adapted to include these
natural spatial restrictions of the Xingu, resulting in a barrier-constrained LoCoH approach (Getz
& Wilmers, 2004). By automatically excluding polygons (hulls) that intersected exclusion zones
(buffers) around waterfalls and high-current segments, only areas that were effectively accessible
were retained during the home range construction process (Getz et al., 2007; Leuchtenberger et

al., 2013).

Statistical Analysis. — Initially, in order to verify the uniformity and quality of the sampling
effort among the monitored individuals, three main metrics were calculated: (i) duration of
monitoring (in days), (ii) total number of locations, and (iii) density of locations per day. The
comparison of these metrics between the groups was performed using non-parametric tests:
Mann—Whitney for sex (males vs. females), paired Wilcoxon for hydrological cycles (high-
water; low-water), and Kruskal-Wallis for river sectors (upstream, midstream, downstream)
(Zar, 2010).

Then, to identify the factors influencing the size of the home range of Podocnemis
unifilis, Generalized Linear Models (GLMs) with Gamma distribution and log linkage function
were fitted (Kie et al., 2010). The response variables consisted of the estimates of the life area
obtained by different analytical methods (MCP, KDE, LoCoH, AKDE and dBBMM),
considering separately the isochronous ones of 95% (total area) and 50% (core use) (Mohr,
1947; Worton, 1989; Getz & Wilmers, 2004; Kranstauber et al., 2012; Calabrese et al., 2016).

As explanatory variables, sex, hydrological station, river sector, and sampling effort measures
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(number of days and number of locations per individual) were included. Each model was
independently tuned for each living area metric.

In addition, in order to compare the performance between the estimation methods, the
data were restructured in long format, allowing the adjustment of integrated GLM models with the
fixed effects "method"” and "isocline", in addition to the same environmental, biological and stress
covariates. The differences between the methods were evaluated using contrasts adjusted in the
emmeans package, with control for the other variables of the model (Lenth, 2020). In addition, the
consistency between the metrics was examined using Spearman correlations (Zar, 2010), Bland—
Altman plots (Bland & Altman, 1986; Sadler et al., 2018), and intra- and intergroup coefficients of
variation.

All analyses were performed using Rstudio software version 4.4.1 (R Core Team,
2024).com the stats, ggplot2 (Wickham, 2016), dplyr (Wickham et al., 2023) and emmeans
(Lenth, 2020) packages. The residuals of the models were visually evaluated, and the assumptions

were verified based on the homogeneity of the variance and the fit to the specified distribution.

RESULTS

General Movement Data — Of the 32 Podocnemis unifilis individuals monitored between

July 2017 and March 2022 (21 females and 11 males) were retained for home range analyses after

the screening process (Table 1). After completing the filtering process, approximately 48,32% of

the original signals were removed, reducing the initial dataset from 4,685 to 2,264 final signals
(Figure 3; Figure 4; Table 1).

Monitoring effort varied widely among individuals, with tracking durations ranging from

8 to 500 days (mean = 149.47 + 111.03 days), totaling 4,484 animal-days. The longest tracking

was for female 163008 (500 days), although with low location density (0.11 loc/day). In contrast,

female 183649 had the highest density (1.38 loc/day) over 57 days. Across sectors, tracking

duration and location density showed high individual variability, with no significant differences
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between sexes (all U = 147,5, p > 0.21), hydrological seasons (W = 42.0, p > 0.06), or river
sectors (U = 3.53, p > 0.17). Among the 20 individuals monitored in both seasons, no statistical
differences were found in tracking duration, number of locations, or daily location density (all p >

0.06) (Table 3; Figure 5A-I).
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Figure 3 - Boxplots of geographic coordinates (latitude and longitude) of individuals tracked by

ARGOS telemetry, with and without outliers, in the middle Xingu River, Pard, Brazil.
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Figure 4 - Spatial distribution of turtle location records across three sectors of the Xingu River:

downstream (black dots), midstream (gray dots), and upstream (orange dots).
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Table 1 - List of Podocnemis unifilis individuals monitored by satellite telemetry. The table presents the species, the sex of the individual (M for male and F

for female), and the ID (PTT number) code used for satellite monitoring.

Coordenates (Capture)

2 @ 3
=) 3 5 = 4 & ee 3 P
@ 3 = % % £5 = lat long <
. E E £ 5
c — [0
84213 M K2G 158A  13/07/2019 2019-07-13 2019-12-05 145 72 -3,4556 -51,9632 {2019: 72}
84214 M K2G 158A  13/07/2019 2019-07-13 2019-12-29 169 33 -3,4535 -51,9655 {2019: 33}
84216 F K2G 158A  16/10/2019 2020-02-15 2020-03-25 39 33 -3,4235 -51,7271 {2020: 33}
163007 F K2G273C  24/11/2014 2017-07-16 2018-07-18 367 113 -3,3889 -52,0186 {2017: 84, 2018: 29}
163008 F K2G273C  16/07/2017 2017-07-24 2018-12-07 501 64 -3,4724 -51,9221 {2017: 6, 2018: 58}
163009 F K2G273C 17/07/2017 2017-07-17 2018-04-26 283 254 -3,3906 -52,0318 {2017: 156, 2018: 98}
163012 F K2G273C  17/07/2017 2017-08-09 2018-02-03 178 20 -3,3364 -51,9997 {2017: 17, 2018: 3}
163013 F K2G273C  17/07/2017 2017-07-21 2018-08-09 384 122 -3,4863 -51,9572 {2017: 34, 2018: 88}
163016 F K2G273C  26/10/2017 2017-10-29 2018-04-04 157 123 -3,3420 -51,9854 {2017: 33, 2018: 90}
183636 F K2G173A  23/09/2019 2019-10-28 2020-05-08 193 123 -3,5140 -51,7027 {2019: 2, 2020: 121}
183637 M K2G 173A  17/10/2019 2019-11-01 2020-05-12 193 78 -3,5110 -51,7053 {2019: 17, 2020: 61}
183638 F K2G173A  17/10/2019 2020-01-12 2020-03-02 50 23 -3,56147 -51,7210 {2020: 23}
183639 M K2G 173A  17/10/2019 2019-12-07 2020-05-29 174 111 -3,4413 -51,7270 {2019: 5, 2020: 106}
183643 F K2G173A  17/10/2019 2019-10-22 2021-03-02 497 510 -3,4457 -51,9400 {2019: 38, 2020: 400, 2021: 72}
183644 M K2G 173A  19/10/2019 2019-11-27 2020-04-04 129 45 -3,2684 -52,1979 {2019: 6, 2020: 39}
183645 M K2G 173A  19/10/2019 2019-10-29 2020-03-19 142 21 -3,3357 -52,2081 {2019: 2, 2020: 19}
183649 F K2G173A  18/10/2019 2019-10-20 2019-12-16 57 77 -2,7363 -52,0675 {2019: 77}
183650 F K2G173A  20/11/2019 2020-01-17 2020-04-21 95 36 -3,4879 -52,2573 {2020: 36}
183651 F K2G173A  18/11/2019 2019-12-10 2020-03-17 98 60 -3,6205 -52,3539 {2019: 5, 2020: 55}
183653 M K2G 173A  18/11/2019 2019-11-27 2020-03-09 103 51 -3,56532 -52,3886 {2019: 38, 2020: 13}
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Coordenates (Capture)
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2 3 i 3 = 5 3
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183654 M K2G 173A  29/01/2020 2020-01-30 2020-07-19 171 21 -2,7321 -52,0682 {2020: 21}
183655 M K2G 173A  13/02/2020 2020-02-14 2020-03-24 39 13 -3,3613 -51,7303 {2020: 13}
183658 F K2G 173A  13/02/2020 2020-02-14 2020-04-06 52 18 -3,4029 -51,7474 {2020: 18}
183660 M K2G 173A  13/02/2020 2020-04-17 2021-03-16 333 13 -2,7311 -52,0645 {2020: 4, 2021: 9}
183661 M K2G 173A  23/09/2019 2020-04-20 2020-04-29 9 17 -2,7308 -52,0473 {2020: 17}
183663 F K2G173A  27/04/2020 2020-04-28 2020-05-15 17 24 -3,4557 -51,9640 {2020: 24}
183664 F K2G 173A  27/04/2020 2021-04-23 2021-06-22 60 11 -3,2363 -52,0903 {2021: 11}
183665 F K2G173A  17/04/2021 2020-11-17 2021-01-26 70 22 -3,2121 -52,1670 {2020: 7, 2021: 15}
183666 F K2G 173A  17/11/2020 2020-12-19 2021-04-12 114 43 -3,2862 -52,0727 {2020: 5, 2021: 38}
183671 F K2G173A  28/06/2021 2021-10-21 2022-01-07 78 29 -3,2219 -52,1845 {2021: 18, 2022: 11}
183673 F K2G173A  13/07/2019 2021-10-21 2022-01-07 78 24 -3,2841 -52,0871 {2021: 18, 2022: 6}
183674 F K2G173A  19/07/2019 2019-11-11 2020-04-11 152 78 -3,4321 -51,9430 {2019: 5, 2020: 73}
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Table 2 - Summary of monitoring effort for Podocnemis unifilis individuals tracked in the

middle Xingu River, organized by sex, river sector, and hydrological season. SD was not

calculated for groups with only one individual.

Hydrological Monitoring Total .
Sector Season Sex ID Days Locations Density (loc/day)
Ubstream Low-water F 163009 366 85 0.23
P High-water F 163007 159 28 0.18
Midstream Low-water F 163008 500 55 0.11
High-water F 183643 425 183 0.43
Downstream Low-water F 183649 57 77 1.38
High-water M 183660 332 13 0.04
Monitoring Total .
Sex Sector Season n Days (Mean =  Locations Denatgél;/lean *
SD) (Mean £ SD)
Downstream Low-water 1 56.0 £ nan 77.0 £ nan 1.38 £ nan
. High-water 9 1179+ 1234 58.4+58.2 0.62+0.41
Midstream
Low-water 5 273.6 £231.7 93.8+1345 0.29+0.31
High-water 11 64.4 + 50.6 35.5+33.0 0.78 £0.52
Upstream

Low-water 9 89.1+113.8 38.2+50.7 0.5+0.29

M Downstream  High-water 3 146.0£167.2 16.7+35 0.79+£1.16

Midstream High-water 3 99.7+534 60.0 £ 46.5 0.54 £0.25
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Figure 5 - Monitoring effort comparison by sex, hydrological season, and river sector for
Podocnemis unifilis individuals monitored in the middle Xingu River. A) Monitoring duration
by sex; B) Total number of location records by sex; C) Monitoring duration by hydrological
season; D) Total number of location records by hydrological season; E) Monitoring duration by
river sector; F) Total number of location records by river sector; G) Daily location frequency
by sex; H) Daily location frequency by hydrological season; 1) Daily location frequency by

river sector.

Home range sizes - The mean 95% home range area was 14.40 £ 20.34 km? using MCP, 11.91
km? with KDE, 14.58 km? with AKDE, 14.78 km? with LoCoH, and 1.45 km? with dBBMM.
The 50% core areas showed lower means: 1.77 km2 (MCP), 3.49 km? (KDE), 2.56 km?2
(AKDE), 2.97 km2 (LoCoH), and 0.26 km2 (dBBMM). LoCoH and AKDE produced the largest

95% estimates on average, whereas dBBMM consistently returned substantially lower area
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values. A similar pattern was observed for the core areas, with dBBMM yielding markedly
smaller 50% ranges compared to the other methods.

Females had larger average areas than males in the 95% isopleths for most methods:
MCP 95% in the upstream/low-water combination: 51.62 = 29.99 km? in females vs. 12.71 +
4.90 km? in males. In the 50% isopleths, sex-related differences were smaller (e.g., MCP 50%
in midstream/low-water: females 2.60 = 5.19 km? vs. males 1.27 £ 0.79 km?).

For instance, in the upstream sector, females had 39.81 + 31.64 km?2 during low-water
vs. 24.18 + 29.53 km? during high-water using KDE (Figure 6). Core (50%) areas varied less
between seasons.

Regarding river sector, the smallest values occurred downstream (e.g., MCP 95% in
males: 1.93 = 1.65 km?), while the largest areas were observed upstream (e.g., AKDE 95% in
females: 34.24 + 14.00 km?). Core areas followed a similar trend: LoCoH 50% ranged from
0.23 + 0.00 km? (downstream/females) to 4.63 + 4.58 km? (upstream/females). In some cases,
however, midstream males exhibited larger core areas than those upstream (e.g., KDE 50%:

4.16 + 2.69 km2vs. 2.72 + 2.78 km).
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Figure 6 - 95% home range area (km?) by river section (Upstream, Midstream, Downstream)

for each estimator: (A) MCP, (B) KDE, (C) LoCoH, (D) AKDE, (E) dBBMM.
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Table 3 - Individual-level estimates of home range size (in km?) for Podocnemis unifilis in the Xingu River, calculated using multiple methods. Values
correspond to isopleths of 95% (total area) and 50% (core area of use). Methods include Minimum Convex Polygon (MCP), Kernel Density Estimation

(KDE), Local Convex Hull (LoCoH), Autocorrelated Kernel Density Estimation (AKDE) and Dynamic Brownian Bridge Movement Model

(dBBMM).
MCP* KDE AKDE LOCOH dBBMM

D 95% 50% 95% 50% 95% 50% 95% 50% 95% 50%
84213 33,15 1,75 31,29 6,15 9,91 2,32 12,59 0,89 1,31 0,24
84214 0,07 0,03 1,38 0 3,35 0,77 1,58 0,06 0,43 0,09
84216 0,03 0,01 0,03 0,01 2,96 0,73 0,03 0,01 0,14 0,04
163007 25,25 42 10,8 0,38 31,41 5,63 12,09 5,27 2,75 0,49
163008 35,01 0,89 38,5 11,78 29,19 3,82 40,89 4,79 2,09 0,32
163009 79,54 1,65 74,14 5,22 47 54 3,31 76,77 1,78 6,16 1,02
163012 2,83 0,57 10,4 2,17 18,98 4,42 20,05 6,26 0,75 0,17
163013 36,21 14,02 15,23 3,27 48,42 7,62 34,01 11,82 4,11 0,52
163016 61,63 11,72 15,21 8,55 24,36 4,13 55,97 16,96 3,72 0,51
183636 8,13 0,77 16,56 2.1 18,23 1,95 11,87 1,2 2.8 0,63
183637 9,77 1,95 25,26 4,71 22,43 3,87 11,12 2,75 2,84 0,61
183638 0,51 0,01 0,28 0,1 5,82 1,2 1,03 0,14 0,48 0,12
183639 2,09 0,33 6,14 0,99 9,18 1,48 3.8 0,47 1,65 0,35
183643 1,66 0,14 2,46 0,26 4,83 0,82 2,03 0,15 1,42 0,17
183644 0,57 0,03 1,13 0,36 6,14 0,94 0,49 0,08 0,6 0,12
183645 9,06 0,06 14,09 4,48 7,53 1,78 19,66 0,92 0,91 0,13
183649 7,47 0,26 2,58 0,52 7,45 1,46 3,49 0,23 1,15 0,26
183650 0,52 0,09 0,67 0,52 6,03 1,22 1,37 0,24 0,71 0,16
183651 3,61 0,5 2,18 0,6 16,12 2,17 9,75 0,67 1,76 0,39
183653 14,81 6,06 13,39 7,23 22,18 4,98 11,82 7,25 1,91 0,35
183654 3,92 0,08 2,33 2,24 16,92 2,36 8,55 0,37 0,53 0,12
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D MCP* KDE AKDE LOCOH dBBMM
95% 50% 95% 50% 95% 50% 95% 50% 95% 50%
183655 6,17 0 32,83 26,64 23,57 6,48 36,37 3,63 0,65 0,07
183658 21,51 0,13 18,71 6,27 8,73 1,58 1,23 0,38 0,65 0,11
183660 0,42 0 459 0 7,17 1,89 12,26 3,34 0,55 0,1
183661 0,74 0 0,5 0,02 7,25 1,63 0,82 0,34 0,52 0,12
183663 26,22 7,02 0 0 3,56 0,24 14,6 10,03 0,65 0,08
183664 0,07 0 2,93 1,14 12,01 2,24 31 0,07 0,36 0,08
183665 10,33 0,64 9,92 1,41 15,66 3,78 17,61 5,68 1,01 0,19
183666 0,01 0 0,22 0,19 1,82 0,52 0,86 0,01 0,45 0,06
183671 0,65 0,01 0,43 0,02 3,39 0,79 0,71 0,17 0,51 0,11
183673 56,55 3,16 24,52 13,26 16,96 451 43,97 8,55 1,12 0,15
183674 2,34 0,51 2,33 1,25 7,37 1,43 2,35 0,63 1,78 0,4
Mean 14,4 1,77 11,91 3,49 14,58 2,56 14,78 2,97 1,45 0,26
SD 20,34 3,41 15,69 5,50 11,93 1,86 18,42 4,15 1,33 0,22
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Table 4 - Mean home range sizes (£ SD, in km?) of Podocnemis unifilis in the Xingu River, grouped by sex, river section (Upstream, Midstream,

Downstream), and hydrological season (high-water and low-water).

MCP KDE AKDE LoCoH dBBMM
Sex Sector Season
95% 50% 95% 50% 95% 50% 95% 50% 95% 50%
Midstream High-water 8.22+11.07 176+3.88 752+809 143+195 1217+123 1.77+1.83 7.93+10.13 1.92 + 3.59 1.83+1.03 0.32+0.21
Low-water 11.5+1543 26+£519 892+1181 214+3.69 15.21+16.95 2.35+2.58 12.09 £ 15.85 269+44 197+1.0 0.25%+0.13
£ Upstream Low-water 74700 0.26+0.0 258+0.0 052+0.0 745+0.0 146+ 0.0 3.49+0.0 0.23+£0.0 1.15+0.0 0.26+0.0
Downstream High-water 37.79+33.7 3.57+459 2418+29.53 3.76 £3.53 24.21+£15.79 2.98+1.42 36.18 + 30.99 5.25+6.66 3.04+£214 05+0.34
Low-water 51.62+29.99 3.12+3.1 3981+31.64 412+345 3424+140 39%129 47.01 + 30.51 4.63 +4.58 4.01+£214 0.66+0.35
Midstream High-water 4.98+359 0.86+0.79 1454+10.26 4.1+6.54 1471+6.64 2.65%1.54 8.63+8.48 1.47+1.22 1.98+0.67 0.42+0.16
Low-water 20.2+15.15 127+£0.79 21.72+13.12 4.16+£269 9.85+5.69 2.09+0.96 9.19+4.84 0.91+0.81 13+0.72 0.26%+0.16
M Upstream High-water 1.93+1.65 0.03+0.04 229+159 09+1.11 11.1+48 1.99+0.32 6.89 + 4.64 1.13+1.32 0.53+0.01 0.11+0.01
Low-water 3.92+nan 0.08+tnan 233xnan 224+nan 16.92+nan 2.36+nan 8.55 + nan 0.37 £ nan 0.53+nan 0.12 £ nan
Downstream High-water 545+575 1.14+235 6.84+6.36 272+278 945+6.1 19+151 7.69 £ 8.43 1.62+271 0.92+0.49 0.17+0.09
Low-water 12.71+49 501+231 11.82+4.19 6.21+236 1945+6.02 4.31+1.47 10.68 £4.3 6.04 £ 2.67 1.7+048 0.31+0.09
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Despite the differences in area values estimated by the various methods, no significant
differences were found between males and females in home range size across any of the
estimators, nor was any consistent effect of hydrological season (high-water versus low-water)
detected (Figure 7). For the 95% isopleth, the MCP, KDE, LoCoH, and AKDE methods
showed a visible reduction in median home range area during the high-water season,
particularly for MCP and LoCoH (Figure 7). Although dBBMM produced smaller estimates in
absolute terms, it also reflected this seasonal reduction, with slightly larger median ranges
observed in the low-water period compared to the high-water period.

For the 50% core areas, seasonal differences were less pronounced, but the same
direction of variation was observed: in all methods, core areas tended to be larger during the
low-water season and more restricted during the high-water season. Notably, AKDE and
LoCoH displayed greater interindividual variability in the dry season, suggesting that some

turtles expanded their space use during this period.
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Figure 7 - Comparison of home range areas (95% isopleth and 50%) between low-water and

high-water seasons for each method.

Individuals located in the upstream sector tended to have substantially larger home
ranges than those in the midstream sector, while individuals in the downstream sector exhibited
the smallest estimated ranges (Table 5). This pattern was most pronounced for the LoCoH and

AKDE methods, where LoCoH 95% home ranges in the upstream sector were, on average,
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approximately four times larger (e*** = 4.0) than those in the midstream (Table 5; p < 0.001
for the Upstream vs. Midstream comparison), whereas LoCoH estimates for the downstream
sector did not differ significantly from the midstream. A similar increase was observed with
AKDE (coefficient for Upstream vs. Midstream ranging from 0.406 to 0.416; p < 0.05; Table
5), and also for core areas estimated by MCP, with 50% MCP in the upstream sector being
significantly larger than in the midstream (p = 0.035; Table 5). Conversely, the downstream
sector exhibited significantly smaller 95% ranges under KDE (coefficient for Downstream vs.
Midstream = —1.597; p = 0.009; Table 5), as well as a marginal reduction in 50% areas
estimated by MCP (p = 0.063; Table 5). In most methods, turtles in the upstream sector showed
higher median 95% home range values and greater variability, while individuals from the
downstream sector consistently exhibited lower estimates.

Monitoring duration had a strong positive effect on estimated home range size across
nearly all methods (Table 3). Longer tracking periods resulted in significantly larger ranges (p
< 0.01 for KDE, LoCoH, AKDE, and dBBMM; Table 5), as well as more extensive 50% core
areas. For example, in the LoCoH model, an approximate 0.6% increase in estimated area was
observed for each additional day of monitoring (Table 5). In contrast, the effect of the number
of locations (telemetry fixes) was inconsistent after accounting for duration. In several cases,
particularly in models for 50% core areas, a greater number of fixes was associated with
slightly smaller estimated ranges (e.g., KDE 50% and AKDE 50% showed small but significant
negative coefficients for number of locations; Table 5).

Despite differences in absolute area estimates, the five home range estimation methods
showed high concordance in the relative ranking of individuals. Spearman rank correlations
between pairs of methods were high, ranging from 0.72 to 0.95 for the 95% isopleths, and
although slightly lower, they were also significant for the 50% isopleths. In particular, AKDE
and KDE showed p = 0.82, and MCP vs. LoCoH showed p = 0.95. Even dBBMM, despite
producing more conservative absolute estimates, maintained strong correlations with the

traditional methods, with p ranging from 0.72 to 0.81 relative to AKDE, MCP, KDE, and
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LoCoH (Figure 8). For the 50% core areas, correlations remained positive but were more
variable: for example, MCP vs. KDE 50% showed p =~ 0.89, while KDE vs. dBBMM 50%

showed a weaker correlation (p = 0.64; Figure 8).

95% isopleth 50% isopleth

MCP
MCP

DE
DE

Kl
Kl

LoCoH
LoCoH

dBBMM AKDE
dBBMM AKDE

MCP KDE LoCoH AKDE dBBMM MCP KDE LoCoH AKDE dBBMM

Figure 8 - Spearman correlation matrices for home range size estimates by different methods

(95% isopleth and 50% isopleth).

For the 95 % isopleths, the pairs involving the trajectory-based estimator exhibited the largest
discrepancies: LoCoH vs. dBBMM showed a mean bias of+13.9 km?, with limits of
agreement (£1.96 SD) ranging from -20.5 to+48.2km? indicating that dBBMM
systematically underestimates total home-range areas relative to LoCoH, especially for
wide-ranging individuals. Among the purely polygonal estimators, differences were modest:
MCP vs. KDE displayed a bias of +2.5 km? (-23.7 to +28.7 km?), and MCP vs. LoCoH was
virtually identical (0.9 km?; —20.0 to +18.2 km?), suggesting convergence in delineating the
outer contour of the home range. The comparison KDE vs. AKDE vyielded a negative bias (—
2.7 km? —24.5 to +19.1 km?).

In the 50 % isopleths, deviations were even smaller. MCP estimated areas 1.7 km?
smaller than KDE (-13.6 to +10.1 km?) and 1.2 km? smaller than LoCoH (-5.2 to +2.8 km?),
whereas KDE exceeded AKDE by only +0.9 km? (-8.1 to +10.0 km?). The largest positive bias
remained in LoCoH vs. dBBMM (+2.7 km?;, —5.3 to +10.7 km?), confirming that dBBMM

remains more conservative even for core-use areas. Together, these results demonstrate that
178



substantial method-specific differences emerge primarily when trajectory-based estimators

(dBBMM) are contrasted with polygonal approaches, with the impact proportionally greater at

the 95 % than at the 50 % home-range level (Figure 9).
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Figure 9 - Bland-Altman plots comparing four estimator pairs for home-range areas:

MCP versus KDE, MCP versus LoCoH, KDE versus AKDE, and LoCoH versus

dBBMM,  shown  separately

for

the 95% and 50% isopleths.
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Table 5 - Gamma GLM results for MCP, KDE, LoCoH, AKDE and dBBMM home range area (95% and 50% isopleths). Coefficients (with standard errors)

are on the log scale (Gamma regression with log-link).

Predictor

Intercept

Sex (M vs F)

Season (Low-water vs
High-water)

Sector (Downstream
vs Midstream)

Sector (Upstream vs
Midstream)

Monitoring duration
(days)

Number of locations
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DISCUSSION

The results show that yellow-spotted river turtles (Podocnemis unifilis) tracked in the
Xingu River exhibit high site fidelity, remaining within relatively narrow river sectors despite
the annual hydrological oscillations (Ribeiro et al., unpublished data). This pattern suggests
that P. unifilis possesses a refined spatial knowledge of its immediate surroundings, routinely
returning to familiar areas that provide predictable food resources, refuges, and
thermal-regulation sites (Benhamou, 2011; Moll & Moll, 2004). In general, the extent of their
home ranges fell within the limits reported for other Amazonian populations of the species and
remained below values typical of larger congeners such as P.expansa (Bock et al., 1998;
Fachin-Terén et al., 2006).

Although a few individuals displayed slightly broader areas of use, probably linked to
body size, maturity, or reproductive demands (Ross et al., 2019) the set of estimates obtained
here corroborates the restricted spatial behavior wusually attributed to the species
(Naveda-Rodriguez et al., 2018; Ponce de Ledo et al., 2019; Hinderaker, 2021,
Ribeiro et al., 2025, unpublished data).

This combination of micro-habitat fidelity and compact home ranges appears to be an
energy-optimization strategy in which smaller-bodied individuals minimize long movements by
concentrating in environments where food and shelter are predictably available throughout the
flood—dry cycle (Gibbons, 1986; Bodie & Semlitsch, 2000). Remaining in known territories may
also reduce exposure to predators and intraspecific competition, conferring an adaptive
advantage in hydrodynamically complex rivers such as the Xingu (Junk etal., 1989;
Alcéantara et al., 2013).

Home-range estimates (95 %) varied widely across algorithms—from just 1.45 km?2 with
dBBMM, which incorporates the temporal structure of trajectories and is therefore more
conservative (Kranstauber et al., 2012), to about 15 km2 with AKDE, which corrects for spatial

autocorrelation (Noonan et al., 2019), and LoCoH, whose local convex hulls follow fluvial
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topography more precisely (Getz & Wilmers, 2004). At the 95 % isopleth, females occupied
significantly larger areas than males, whereas 50% core areas were similar between sexes. This
likely reflects peripheral excursions by females in search of nesting sites
(Naveda-Rodriguez et al., 2018; Ponce de Ledo et al., 2019) without substantially altering their
central habitat, as shown here.

A longitudinal gradient was also evident: the smallest areas occurred downstream and the
largest upstream across all estimators, as confirmed by GLM results. Minimal downstream
values appear linked to the Tabuleiro do Embaubal Wildlife Refuge, the Amazon’s largest
chelonian nesting ground, where legal protection ensures abundant nesting beaches, perennial
food resources, and low human disturbance. In such settings, turtles can concentrate their
activities in small spatial bands because essential resources are available within a restricted
radius,  obviating long movements. This  mechanism has been reported
for P. unifilis and P. expansa at the refuge and elsewhere in the Amazon, where dense nesting
and community management limit the need for extensive travel (WWF, 2013; Oliveira, 2018).
Comparable patterns occur in both marine and freshwater turtles: individuals foraging inside
food-rich marine reserves show home ranges <1km? (Baumbach etal., 2019), while
adult Chelonia mydas in productive bays travel only a few square kilometers
(Seminoff et al., 2002). Global meta-analyses confirm that high resource availability and low
disturbance are among the main predictors of reduced home-range size in turtles
(Slavenko et al., 2016). Effective protection lowers hunting risk and vessel traffic, explaining the
minimal values downstream compared with mid- and upstream sectors, where Belo Monte’s
altered hydrodynamics and fewer beaches may necessitate larger movements.

Satellite imagery shows that the Volta Grande do Xingu (mid-sector) experienced major
hydrologic reconfiguration and island loss after Belo Monte began operating, producing a more
fragmented mosaic of aquatic and floodplain habitats (Kalacska et al., 2020). Hydrological
studies further demonstrate that the dam altered the flood pulse, changing lateral connectivity

and resource availability in this reach (Timpe & Kaplan, 2017), while cumulative-impact
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analyses reveal permanent flow reduction downstream and changes in sand-bar structure
(Fearnside, 2006).

Rapids and waterfalls characteristic of the intermediate sector also act as partial barriers
to P. unifilis movement, increasing longitudinal resistance (Agostini et al., 2024). Although most
literature on intact Amazonian rivers reports larger home ranges during floods, our dataset shows
the opposite pattern in the regulated mid-Xingu larger areas in the dry season. Likely drivers
include: (i) the dampened flood pulse under Belo Monte, which limits lateral connectivity during
floods (Timpe & Kaplan, 2017; Fearnside, 2016); (ii) the “dispersed-scarcity hypothesis,”
whereby receding waters isolate floodplain lakes and patchily distribute food and refuges,
forcing longer travel (Junk etal., 1989; Fachin-Teran et al., 2006); (iii) reproductive demands
leading females to make long longitudinal trips to nesting beaches at peak low water
(Naveda-Rodriguez et al., 2018; Simoncini et al., 2022); (iv) individual heterogeneity typical of
short-distance facultative migrants, with some turtles ranging widely in the dry season
(Ponce de Ledo et al., 2019); and (v) measurement geometry: during floods many moves occur
within contiguous flooded forests, compressing two-dimensional outlines, whereas dry-season
moves along the main channel artificially inflate MCP, KDE, and AKDE estimates—a bias
shown for Amazonian turtles in the Jurud River (Hinderaker, 2021), for which
Ouellette & Cardille’s (2011) CLHR and Row & Blouin-Demers (2006) simulations highlight
MCP/KDE overestimation in linear habitats.

Intrapopulation variation indicates strong behavioral plasticity: sex, body size, and
reproductive status modulate site fidelity. Podocnemidids span a continuum from residents to
long-distance migrants. For instance, 85 % of P. lewyana in the Magdalena River maintain
<1km linear ranges, whereas some reproductive females travel 3-5km
(Alzate-Estrada et al., 2020).

Female P. sextuberculata in Mamiraua use 1645 km linear ranges and migrate ~18 km
between lakes and nesting beaches, whereas males remain almost sedentary

(Fachin-Teran et al., 2006). P. expansa shows the extreme, with movements of hundreds of
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kilometers that require basin-scale corridors (Forero-Medina et al., 2019). Even P. unifilis in the
Trombetas River display ranges from 0.6 to 215 ha, indicating a few individuals expand far
beyond the population mean (Ponce de Le&o et al., 2019). In this study, no permanent nomadism
was observed, but occasional exploratory trips imply that, under favorable conditions (e.g.,
exceptional floods or localized scarcity), turtles may switch from resident to exploratory
behavior, underscoring the need for management that safeguards both habitat cores and potential
movement routes.

Hydrological fragmentation caused by dams drastically affects aquatic species’ spatial
behavior. In the Volta Grande, an ~80 % flow reduction after Belo Monte (Higgins, 2021)
shrank floodable area. Tracked turtles now face much less habitat during floods, restricting
movements to remnant channels and isolated pools. Our data suggest smaller home ranges and
reduced seasonal movement amplitude compared with natural rivers (Ribeiro et al., unpublished,
Fachin-Teran et al., 2006). In intact systems, females of P. sextuberculata travelled 16-45 km
between feeding lakes and nesting beaches (Fachin-Teran et al., 2006), and P. unifilis in the
Napo River ranged up to 30 km annually (Naveda-Rodriguez et al., 2018). No such distances
occurred under the regulated Xingu, implying lateral-connectivity loss limits typical migrations.

Dam-imposed isolation likely keeps turtles in suboptimal habitats for long periods,
increasing resource competition and hindering access to traditional foraging and nesting areas
(Barcenas-Garcia et al., 2022a, b). Similar alterations threaten Amazonian aquatic fauna broadly
(Fearnside, 2016), and turtles in particular (Norris et al., 2021; Barcenas-Garcia et al., 2022a, b).
In short, Xingu turtles still display flood-pulse-modulated patterns, but fragmentation has likely
dampened this dynamic, reducing natural behavioral plasticity. Such flood-regime changes
already cause lateral-connectivity loss, population isolation, and turtle declines elsewhere in the
Amazon (Correaetal., 2022); global reviews confirm dams disrupt migration routes,
nesting-beach availability, and critical habitats, suppressing flexible responses to seasonal pulses
(Barcenas-Garcia et al., 2022). Reservoir-induced connectivity loss has also altered age structure

and reduced fecundity in several Podocnemis species (Alho et al., 2011).
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Finally, interpretation of spatial patterns must consider analytical tools. Different
home-range estimators can yield distinct results from the same dataset (Borger et al., 2006;
Boyle et al., 2009; Noonan et al., 2019). MCP overestimates area by enclosing unused spaces
and is especially problematic in linear landscapes—its convex geometry fills meanders and side
channels, creating polygons that misrepresent accessible surface. Simulations show MCP error
can exceed 200% in narrow corridors (Row & Blouin-Demers, 2006). The CLHR
(Ouellette & Cardille, 2011) and Amazonian studies confirm MCP not only inflates values but
can erase critical hydrological compartments (Hinderaker, 2021). KDE 95 % better delineated
intensive vs. occasional-use zones (Worton, 1989) but assumes independence; autocorrelation
leads to oversmoothing, and in linear rivers it projects use onto adjacent land
(Swihart & Slade, 1985; Silva et al., 2022). KDE can overestimate area by 50-300 % in such
settings (Row & Blouin-Demers, 2006; Ouellette & Cardille, 2011). LoCoH mitigates these
issues by restricting hulls to point neighborhoods, respecting riverbanks
(Getz & Wilmers, 2004), but may underestimate area if sampling is sparse (Getz et al., 2007).
dBBMM incorporates time, revealing movement corridors and separating travel from residency
(Horne et al., 2007; Mascarenhas-Junior et al., 2023, 2024), though it needs high fix rates
(Kranstauber et al., 2012). AKDE offers statistically robust areas and confidence intervals by
modeling autocorrelation (Fleming et al., 2015; Calabrese et al., 2016); ignoring autocorrelation
underestimates area, and AKDE averages twice the size of traditional estimators
(Noonan et al., 2019; Silva et al., 2021).

Given these trade-offs, we recommend a multimodel approach: AKDE for total area,
dBBMM for functional connectivity, and LoCoH/KDE for activity centers, providing an
integrated, ecologically realistic depiction of P. unifilis movement. Satellite-tracking effort also
matters. ARGOS duty-cycle settings balance fix frequency and battery life; low-power cycles
extend tracking but reduce daily fixes, while intensive schedules shorten tag life
(Douglas et al., 2012; Dubinin et al., 2010). ARGOS location quality varies by class; median

errors range from ~150m (class1l) to >1km (classes A-Z) (McClintock etal., 2015;
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Vincent et al., 2002). Filtering can remove up to 90 % of bad fixes but reduces usable effort
(Douglas et al., 2012). Some tags failed before spanning a full seasonal cycle—common in
humid tropics (Wittetal., 2010) so individuals with <60 high-quality fixes may have
underestimated ranges.

Overall, P. unifilis in the mid-Xingu relies on compact home ranges, micro-habitat
fidelity, and seasonal connectivity provided by the flood pulse to reach nesting beaches,
floodplain lakes, and back-water channels. Conservation priorities include (1) re-establishing
partial hydrological connectivity via ecological flows maintaining > 80 % natural discharge
during floods (Richter et al., 2012); (2) protecting key habitat cores and corridors identified by
AKDE/LoCoH and dBBMM (~15 km? in upstream and mid-sectors; Norris et al., 2018); and (3)
fostering community co-management to protect beaches and regulate boat traffic
(Campos-Silva & Peres, 2016; Pezzuti et al., 2010). Long-term telemetry, rigorous ARGOS
filtering (Douglas et al., 2012), and autocorrelated estimators (Fleming et al., 2015) should guide
adaptive management and dam-operation rules. Future hydropower licensing must internalize
connectivity costs, provide functional passages, compensate for beach loss, and mandate
post-dam monitoring. Isolated reserves are insufficient; a network protecting short migration
routes, foraging hubs, and nesting beaches aligned with Brazil’s national turtle action plan
(ICMBIo) is required. Under climate change, more severe hydrological extremes will combine
with fragmentation to heighten collapse risk. Functional river corridors, genomic monitoring for
bottlenecks, and public-awareness campaigns about the species’ ecological and cultural value are
essential parts of a robust conservation strategy for P. unifilis in the Xingu and other Amazonian

basins under hydropower pressure.

CONCLUSION

This analysis of the spatial ecology of the yellow-spotted river turtle (Podocnemis

unifilis) in the Xingu River, encompassing different hydrological segments, seasons, and sex
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classes, provides a comprehensive and integrated overview of how the species responds to a
fragmented and regulated riverine ecosystem. P. unifilis demonstrated a remarkable capacity for
behavioral adjustment, maintaining seasonal movement patterns and fidelity to key habitats even
under altered conditions, albeit within the constraints imposed by water availability and resource
distribution. The striking differences among the upstream reservoir, the reduced-flow Volta
Grande, and the regulated downstream section eloquently illustrate the critical importance of a
natural hydrological regime in sustaining the ecological processes that support these turtles life
cycles.

Ecologically, we found that P. unifilis retains typical traits of Amazonian turtles, such as
moderate reproductive movements in females, high philopatry, and a preference for lentic
environments, but also experiences severe limitations when its habitat is transformed, reducing
both home range size and migration opportunities. Methodologically, we emphasize the value of
applying modern analytical tools and recognizing the limitations of Argos telemetry data to
ensure more accurate and statistically robust interpretations. Finally, from a conservation
perspective, our findings support concrete actions aimed at mitigating the impacts of the Belo
Monte Hydroelectric Dam and offer recommendations applicable to other hydropower projects:
the need to preserve or simulate natural flood pulses, protect critical habitats (such as nesting
beaches and dry-season refuges), and manage each isolated subpopulation with targeted
measures. In the face of rapid environmental change in the Amazon, studies like this, grounded
in robust empirical data and informed by current ecological understanding, are essential to

support effective conservation strategies.
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CONSIDERACOES FINAIS

Esta tese fornece uma grande contribuicdo para o entendimento da ecologia espacial de
quelénios de agua doce, com foco no tracaja (Podocnemis unifilis), em um dos rios mais
ambientalmente modificados da Amazoénia brasileira, o rio Xingu. A abordagem escalonada, que
articula uma revisdo global, uma investigacdo empirica local e uma analise detalhada de area de
vida sob diferentes métodos analiticos, permitiu explorar tanto os padrdes gerais quanto as
respostas contextuais da espécie frente a diferentes niveis de impacto antrépico.

No Capitulo 1, a revisdo sistematica revelou um aumento expressivo nos estudos sobre
movimentacdo de queldnios ao longo das ultimas quatro décadas, mas também evidenciou
lacunas importantes na representatividade taxondmica e geografica, especialmente nas regides
tropicais. Embora radiotelemetria continue sendo a técnica predominante, a ado¢do de métodos
mais sofisticados tem crescido, embora ainda limitada para espécies ameacadas ou de interesse
comercial. A andlise destacou ainda a importancia crescente da telemetria como ferramenta

indispensavel para subsidiar decisGes de manejo e conservacao.
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O Capitulo 2 investigou o comportamento espacial de P. unifilis ao longo de trés setores
longitudinais do médio Xingu, revelando uma expressiva varia¢do sazonal no uso do espago.
Durante a estacéo seca, os individuos restringiram seus deslocamentos a areas permanentes, com
forte fidelidade espacial; j& no periodo de cheias, expandiram sua area de uso, explorando
habitats temporariamente acessiveis. Apesar dessa plasticidade, ndo se observaram orientacoes
direcionais consistentes, nem diferencas estatisticas marcantes entre sexos ou setores. Esses
padrdes indicam que a espécie adota uma estratégia de movimentagdo oportunistica, fortemente
mediada pela conectividade hidroldgica local e pelas condi¢bes do microhabitat, mais do que por
deslocamentos orientados de longa distancia.

No Capitulo 3, as estimativas de area de vida utilizando cinco métodos (MCP, KDE,
AKDE, LoCoH e dBBMM) confirmaram ampla variabilidade individual, mas evidenciaram
padrdes de movimento restritos e uma notavel permanéncia espacial ao longo do tempo. As
diferencas observadas entre os setores, com maiores &reas de vida no reservatorio a montante e
menores na Volta Grande (intermediario) sugerem que a fragmentacdo afeta de maneira
significativa a amplitude de movimentacdo da espécie. A limitacdo espacial observada na Volta
Grande, em particular, reforca a vulnerabilidade de P. unifilis em ambientes fluviais altamente
regulados, onde a heterogeneidade estrutural e a conectividade sazonal foram drasticamente
reduzidas.

Em conjunto, os trés capitulos convergem para uma conclusdo critica: embora P. unifilis
demonstre resiliéncia ecoldgica por meio de certa plasticidade comportamental, sua persisténcia
depende diretamente da manutencdo de habitats funcionais, da integridade dos ciclos
hidrolégicos naturais e da conectividade longitudinal e lateral do sistema fluvial. A espécie
utiliza predominantemente areas restritas e demonstra fidelidade espacial acentuada, o que a
torna sensivel a alteracGes no regime hidrossedimentolégico e a perda de habitats criticos como
praias de desova.

Dessa forma, a presente tese reforca a urgéncia da incorporagdo de dados de

movimentacdo e uso do espago em estratégias de manejo adaptativo e licenciamento ambiental
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de empreendimentos hidrelétricos. Sugere-se, ainda, a implementacdo de um Manejo Espacial
Integrado (MEI) para o rio Xingu, que contemple: (i) a protecdo de nucleos de uso recorrente,
(if) a simulacédo de pulsos de cheia para manter a conectividade sazonal, e (iii) o reconhecimento
legal e ecoldgico de areas criticas para a reproducdo e sobrevivéncia de quel6nios. Ao unir
sintese global, evidéncia local e aplicacdo préatica, esta tese oferece fundamentos cientificos
solidos para agGes de conservacdo mais eficazes de P. unifilis e, por extensdo, para a manutengdo

da integridade ecoldgica dos grandes rios amazonicos.
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