

UNIVERSIDADE ESTADUAL DE SANTA CRUZ – UESC PROGRAMA DE PÓS-GRADUAÇÃO EM ECOLOGIA E CONSERVAÇÃO DA BIODIVERSIDADE

EDYLA RIBEIRO DE ANDRADE

EFEITO DA PERDA DE HÁBITAT NA DIVERSIDADE FILOGENÉTICA DE ÁRVORES JUVENIS E ADULTAS NA MATA ATLÂNTICA DO SUL DA BAHIA, BRASIL.

ILHÉUS, BAHIA, BRASIL 2018

UNIVERSIDADE ESTADUAL DE SANTA CRUZ – UESC PROGRAMA DE PÓS-GRADUAÇÃO EM ECOLOGIA E CONSERVAÇÃO DA BIODIVERSIDADE

EDYLA RIBEIRO DE ANDRADE

EFEITO DA PERDA DE HÁBITAT NA DIVERSIDADE FILOGENÉTICA DE ÁRVORES JUVENIS E ADULTAS NA MATA ATLÂNTICA DO SUL DA BAHIA, BRASIL.

Tese apresentada ao Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade da Universidade Estadual de Santa Cruz – UESC, como parte das exigências para obtenção do título de Doutor em Ecologia e Conservação da Biodiversidade.

Orientadora: Eliana Cazetta Co-orientador: Bráulio A. Santos

ILHÉUS, BAHIA, BRASIL 2018

A553	Andrade, Edyla Ribeiro de. Efeito da perda de hábitat na diversidade filoge- nética de árvores juvenis e adultos na Mata Atlântica do Sul da Bahia, Brasil / Edyla Ribeiro de Andrade. – Ilhéus, BA: UESC, 2018. 164 f. : il.
	Orientadora: Eliana Cazetta. Co-orientador: Bráulio A. Santos. Tese (Doutorado) – Universidade Estadual de Santa Cruz. Programa de Pós-Graduação em Ecologia e Conservação Biodiversidade. Inclui referências e apêndices.
	1. Comunidades vegetais. 2. Diversidade das plan- tas. 3. Habitat (Ecologia). 4. Mata Atlântica. 5. Biodi- versidade. I. Título.
	CDD 581.7

EDYLA RIBEIRO DE ANDRADE

EFEITO DA PERDA DE HÁBITAT NA DIVERSIDADE FILOGENÉTICA DE ÁRVORES JUVENIS E ADULTAS NA MATA ATLÂNTICA DO SUL DA BAHIA, BRASIL.

Tese apresentada ao Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade da Universidade Estadual de Santa Cruz – UESC, como parte das exigências para obtenção do título de Doutor em Ecologia e Conservação da Biodiversidade.

Dra. Elâine Maria dos Santos Ribeiro Universidade Federal de Pernambuco Campus Petrolina

Dr. Fredy Alexander Alvarado Roberto Universidade Federal da Paraíba

Dra. Kátia Fernanda Rito Pereira Universidad Nacional Autonoma de Mexico

Dra. Daniela Custódio Talora Universidade Estadual de Santa Cruz

Dra. Eliana Cazetta Universidade Estadual de Santa Cruz Orientadora

AGRADECIMENTOS

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pela bolsa de doutorado concedida e ao CNPq pela bolsa de doutorado Sanduíche.

Aos financiadores desta pesquisa: Rede de Pesquisa em Funcionamento Ecológico de Paisagens Florestais Antrópicas (Rede Sisbiota/CNPq).

À Universidade Estadual de Santa Cruz e ao Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade por todo apoio logístico. Sem esquecer das secretárias Iky e Amábille, grata por sempre receberem os alunos com sorrisos e disponibilidade em ajudar.

À minha orientadora Eliana Cazetta, por tantos anos de aprendizagem, por estar comigo nessa longa jornada de formação acadêmica, pelos ensinamentos, mas acima de tudo por ter sido muito mais que uma orientadora. Sou grata por todo carinho, compreensão, momentos compartilhados dentro e fora da academia, e por ser esse exemplo de mulher que tanto me inspira. Não teria conseguido sem seu apoio fundamental.

À meu co-orientador Bráulio A. Santos, pelo incentivo inicial em adentrar nesse mundo do doutorado e por toda ciência compartilhada.

Ao Víctor A. Rodriguez, por me orientar e me receber muito bem na Universidad Autonoma de Mexico durante meu período de Doutorado sanduíche. Certamente esse foi um período que me possibilitou muito aprendizado profissional e pessoal.

A todos os docentes do PPGECB, pelo conhecimento compartilhado em disciplinas, pelas discussões acadêmicas e por toda contribuição em minha formação. Em especial aos membros do Laboratório de Ecologia Aplicada a Conservação (LEAC), professores e colegas, por toda experiência em seminários, reuniões, palestras e momentos de café compartilhados. À Deborah Faria pela dedicação ao LEAC e ao projeto Sisbiota.

Ao Pavel, pela ajuda dada em momentos de dúvidas e mais do que isso, pelo carinho demonstrado. Obrigada pelas iniciativas de grupos de estudo, de limpeza de praia, és um exemplo de pessoa para mim.

Aos colegas Larissa, Michaele e Francisco por cederem os dados para o desenvolvimento da minha pesquisa.

Aos colegas e amigos que encontrei no México. Agradeço a Kátia, Fredy, Pili (roomie), Dani, Gabi, Yashua e todos que fizeram parte de meus dias. Em especial a Kátia por todo carinho. À Melina e Carol pelas risadas e pelo 'Mexcal', lembro sempre com carinho de todas as histórias. E muito especial a meu presente do México pra vida, Carol, minha amiga de todas as horas, companheira de aventuras e risadas.

Às minha amigas e parceiras de trabalho, Jamille e Larissa, obrigada por todas as aventuras, companheirismo, lágrimas e principalmente por tantas risadas compartilhadas. Vocês são muito especiais.

Às 'elianetes' (Leiza, Adriele, Lari, Jam, Michaele) pelos encontros e compartilhamento de angústias e alegrias.

Aos meus pais por todo apoio. À minha querida mãe (*in memorian*), que sempre dizia 'minha filha doutora' mesmo quando eu insistia em dizer que ainda estava longe de chegar lá. Tentarei sempre ser motivo de seu orgulho aonde quer que esteja. Ao meu querido pai, que esteve comigo em toda a caminhada nessa etapa, me incentivando, torcendo e me apoiando em cada dificuldade.

À minha irmã Erika, pela torcida e apoio, por ser sempre por mim e eu por ela. Ainda mais agora, pelo presente que me deu, minha sobrinha e afilhada Ayla, que no meio de toda tensão e nervoso dos momentos finais de escrita me fazia desmanchar em amor com seus sorrisos mais lindos. À minha irmã Carmélia e meus queridos sobrinhos.

Aos amigos queridos que me incentivaram em momentos de desânimo, enxugaram lágrimas de desespero e me ajudaram a acreditar em mim mesma. Obrigada à Luan, por aguentar meu estresse, rs e por todo apoio.

À Jamille e Gaby, pela ajuda e força nos momentos finais da tese, pela ajuda em referências e nos gráficos e por compartilhar minhas aflições em momentos críticos de minha vida.

À Glaucia, pelo empenho e ajuda na confecção da árvore e pela oportunidade em conseguir orientar e ter a sensação de ter contribuído com o seu crescimento profissional.

À Ellionay e Clenia por segurarem as pontas pra mim no trabalho em momentos críticos, rs. Agradeço à Deus, pela vida, pela força e pela sustentação em cada passo.

Agradeço, por fim, a todos que acreditaram em mim e contribuíram de alguma forma para que fosse possível a concretização dessa etapa.

"Agradeço todas as dificuldades que enfrentei; não fosse por elas, eu não teria saído do lugar... As facilidades nos impedem de caminhar. Mesmo as críticas nos auxiliam muito. Emmanuel sempre me ensinou assim: - Chico, se as críticas dirigidas a você são verdadeiras, não reclame; se não são, não ligue para elas..."

Texto do livro: "O Evangelho de Chico Xavier"

RESUMO GERAL

A perda de habitat é considerada a ameaça principal à biodiversidade, especialmente em ecossistemas com grande número de espécies endêmicas, como a Floresta Atlântica. O aumento nas taxas de desmatamento causa impactos que vão desde mudanças na estrutura da floresta, declínios populacionais, extinção de espécies a efeitos diretos e indiretos em processos ecológicos. Estas alterações moldam as comunidades ecológicas remanescentes. Deste modo, as florestas contínuas têm se convertido em um mosaico de fragmentos florestais imersos em matrizes antropogênicas e o entendimento e a manutenção dessas paisagens representam um dos grandes desafios da conservação. Além disso, estes impactos antrópicos podem afetar de forma diferente as assembleias de plantas a depender de seu estágio ontogenético. Isto porque os indivíduos adultos tendem a permanecer nas comunidades por um longo tempo após o distúrbio, mas podem ter seu sucesso reprodutivo alterado (por limitações de dispersão e/ou estabelecimento) e os estágios ontogenéticos iniciais são consequentemente mais suscetíveis aos efeitos destas perturbações de habitat. Este processo de atraso nas respostas frente a um distúrbio é conhecido como débito de extinção, no qual apesar dos indivíduos adultos permanecerem nas assembleias, o débito será pago nas próximas gerações. Deste modo, para contribuir com o melhor entendimento deste cenário, esta tese realizou uma meta-análise dos efeitos das perturbações antrópicas na diversidade filogenética de plantas, além disso avaliou o efeito da perda de cobertura florestal nas diversidades alfa (filogenética) e beta (taxonômica e filogenética) de assembleias de árvores adultas e juvenis na Floresta Atlântica do sul da Bahia. Para realizar a meta-análise foram utilizados 13 artigos, que forneceram 15 relações associadas a sete diferentes tipos de distúrbios antropogênicos. Para avaliar o efeito da redução de cobertura florestal (gradiente de 5-99%) nas diversidades alfa e beta, foram utilizados 20 fragmentos florestais em um gradiente de cobertura florestal (5-99%) e amostrados indivíduos arbóreos juvenis (altura $\ge 1,3$ m e DAP ≤ 5 cm) e adultos (DAP ≥ 5 cm). O principal resultado da meta-análise foi um efeito geral de perda de diversidade e/ou aumento do agrupamento filogenético das comunidades de plantas frente aos distúrbios antropogênicos, independente do índice utilizado, do tipo de distúrbio e do tipo florestal. Os principais resultados na diversidade alfa de árvores, indicaram que as respostas filogenéticas à perda de cobertura florestal foram lineares ou ausentes e que há um empobrecimento filogenético das comunidades de árvores com efeitos mais fortes no estágio juvenil. Por fim, os principais resultados da beta diversidade mostraram que em relação a β -diversidade entre os sítios com diferentes coberturas florestais, a taxonômica foi 14,2% maior na assembleia de juvenis do que de adultos e a filogenética foi similar entre os estágios ontogenéticos independente da estratégia de regeneração (tolerância a sombra). A distância entre os sítios foi o melhor preditor da β -diversidade entre os sítios amostrais. Além disso, a substituição de espécies entre juvenis e adultos dentro de cada sítio amostral foi bastante alto, especialmente para as espécies intolerantes à sombra, sendo apenas a β -diversidade filogenética afetada pela a redução da cobertura. Desta forma, nossos resultados indicaram que a redução de cobertura florestal provoca alterações nas diversidades alfa e beta de comunidades de árvores, a diversidade alfa foi afetada evidenciando um possível débito de extinção e a beta demonstrando que as comunidades futuras em fragmentos de baixas coberturas estarão bastante modificadas em relação a comunidade original em paisagens conservadas.

Palavras-chave: Diversidade filogenética, comunidade de plantas, estágios ontogenéticos, alpha-diversidade, beta-diversidade, Floresta Atlântica.

GENERAL ABSTRACT

Habitat loss is the main threat to biodiversity, especially in ecosystems with high endemism such as the Atlantic Forest. The increasing deforestation rates causes impacts on forest structure, population decline, species extinction, and direct and indirect effects on ecological processes. These changes shape the remaining ecological communities. In this way, forest loss has converted once continuous forests into a mosaic of forest patches surrounded by anthropogenic matrices and biodiversity maintenance in these landscapes represents one of the greatest conservation challenges. Moreover, habitat modification can also differently affect plant assemblages, depending on their ontogenetic stage. Adult individuals tend to remain in the community for a longer time after disturbance, but might have their reproductive success altered (due to dispersal and/or establishment limitations) and the early ontogenetic stages can be more susceptible to disturbance effects. This process of delayed responses to anthropogenic disturbances is known as extinction debt, in which adult individuals remain in the assemblages, but the debt will be paid in the next generations. Thus, to contribute to a better understanding of this scenario, this thesis conducted a meta-analysis of the effects of anthropogenic disturbances on plant phylogenetic diversity. In addition, it evaluated the effects of forest loss on alpha (phylogenetic) and beta (taxonomic and phylogenetic) of adult and juvenile tree assemblages in the Atlantic Forest of southern Bahia. To perform the meta-analysis, we used 13 articles, which provided 15 relationships that were associated with seven different types of anthropogenic disturbances. To evaluate the alpha and beta diversities, we used the assemblage of juveniles (individuals with woody stem, heights ≥ 1.3 m, and DBH ≤ 5 cm) and adult trees $(DBH \ge 5cm)$ in 20 sites covering a wide variation of habitat amount (ranging from 5-99% of forest cover). The main result of the meta-analysis was a general effect of diversity loss and/or increase in phylogenetic clustering of plant communities in response to anthropogenic disturbances, regardless of the index used, type of disturbance, and forest type. The main results about the alpha diversity indicated that the phylogenetic responses to forest loss were linear or absent, and that a phylogenetic impoverishment of the tree communities with stronger effects in the juvenile stage was recorded. Finally, the main results about the beta diversity showed that in relation to the β -diversity among forest fragments with different forest cover, the β taxonomic was 14.2% higher in the juvenile assembly than in adults, and the β -phylogenetic was similar among the ontogenetic stages independent of the regeneration strategy (shade

tolerance). The distance between the sites was the best predictor of β -diversity among the sample sites. In addition, the turnover of species between juveniles and adults within each sample site was very high, especially for shade-intolerant species, but only β -phylogenetic diversity was affected by the forest loss. In this way, our results indicated that the reduction of forest cover causes alterations in alpha and beta diversity of tree communities. The alpha diversity was affected, showing a possible extinction debt and the beta diversity demonstrated that future communities in low forest coverage fragments would be modified in relation to the original community in conserved landscapes.

Key-words: Phylogenetic diversity, tree community, ontogenetic stages, alpha diversity, beta diversity, Atlantic Forest.

Resumo geral	vii
General abstract	ix
Introdução geral	1
Objetivos	3
Referências	4
Capítulo 1 - Efeito das perturbações antrópicas na diversidade filogenética de plantas:	Uma
meta-análise	
Resumo	7
Introdução	8
Métodos	11
Resultados e discussão	13
Observações finais	21
Literatura usada na meta-análise	22
Referências	23
Capítulo 2 - Forest loss and the phylogenetic impoverishment of tree assemblages in	the
Brazilian Atlantic Forest	
Abstract	30
Introduction	31
Methods	34
Results	39
Discussion	44
References	47
Appendix S1	51
Appendix S2	52
Appendix S3	60
Capítulo 3 - Taxonomic and phylogenetic β -diversity in a gradient of forest loss: Diffe	erent
responses of adult and juvenile tree assemblages	
Abstract	71
Introduction	73
Material and Methods	76
Results	80

SUMÁRIO

Discussion	86
Conclusion	89
References	
Appendix S1	
Appendix S2	
Appendix S3	
Conclusões Gerais	164

INTRODUÇÃO GERAL

A redução de habitat é considerada a ameaça principal à biodiversidade, especialmente em um ecossistema com um grande número de espécies endêmicas, como a Mata Atlântica (Tabarelli et al. 2005). Estima-se que no Brasil existam apenas 11,4% a 16% de remanescentes, incluindo áreas de floresta secundária e pequenos fragmentos e na Bahia, cerca de 18% (Ribeiro et al. 2009). Além disso, 83,4% dos fragmentos de floresta atlântica brasileira são menores que 50 ha e áreas de reserva protegem apenas 9% dos remanescentes florestais (Ribeiro et al. 2009). Segundo Fahrig (2013), a redução de habitat em uma escala de paisagem seria o principal responsável pela perda de riqueza de espécies. A perda de habitat nas florestas tropicais afeta diretamente a biodiversidade, pela eliminação de espécies, mas também desencadeia uma série de alterações que afetam indiretamente a sobrevivência de muitas outras espécies.

Espécies de plantas podem ser indiretamente afetadas por diversos fatores gerados pela alteração do habitat, como condições microclimáticas alteradas a que são expostas, e a perda de interações com polinizadores e/ou dispersores (Markl et al. 2012; Garcia & Chacoff 2007), que vão influenciar o sucesso reprodutivo e a consequente manutenção da diversidade das comunidades. Além disso, pode haver uma homogeneização da floresta, pela proliferação de pioneiras e espécies de estágios iniciais de sucessão ecológica (Tabarelli & Lopes 2008). Desta forma, essas alterações no habitat culminam em uma perda de diversidade de plantas, além de um empobrecimento em termos de composição de espécies.

Um outro fator importante são as consequências dessas alterações, ao haver uma conversão da floresta contínua em um mosaico de fragmentos florestais imersos em matrizes antropogênicas (Melo et al. 2013), a manutenção da biodiversidade nessas paisagens representa um grande desafio (Gardner et al. 2009). Assim, além da perda de espécies, é importante avaliar o impacto das recentes configurações de habitat nas diferenças de composição de espécies entre as áreas remanescentes (diversidade beta – β) de modo a verificar a real ameaça a diversidade total. No entanto, a maioria dos estudos tem focado na diversidade local (diversidade alfa - α) (Whittaker et al. 2001) e pouco é conhecido sobre o impacto das paisagens fragmentadas na substituição de espécies (Solar et al. 2015), especialmente nos trópicos (Karp et al. 2012).

Além disso, os efeitos das alterações do habitat podem ser verificados de forma diferente ao longo dos estágios ontogenéticos das plantas lenhosas. Indivíduos adultos, quando estabelecidos, tendem a permanecer nas assembleias locais, mesmo gerações após as alterações de habitat (Kuussaari et al. 2009). Para as espécies arbóreas os indivíduos adultos podem permanecer na paisagem durante um longo tempo após a alteração (Metzger et al. 2009). Porém, seu sucesso reprodutivo é alterado, de modo que os efeitos de perturbações podem ser sentidos

mais efetivamente por indivíduos de estágios ontogenéticos iniciais (juvenis) (Tilman et al. 1996). Os estágios ontogenéticos podem apresentar diferentes respostas às alterações de habitat, até mesmo em termos de estrutura filogenética (Gonzalez et al. 2010). Dessa forma, avaliar indivíduos adultos e jovens simultaneamente é imprescindível para obter informações sobre como esses grupos estão sendo afetados pela perda de cobertura florestal.

Nesse contexto, entender como a perda de habitat afeta a biodiversidade é cada vez mais necessário, principalmente sendo este um processo acelerado e contínuo que necessita de ações diretas para conservação das espécies ainda existentes. Contudo apenas o número de espécies não reflete toda a biodiversidade do habitat. Os índices de diversidade tradicionais, que consideram apenas a riqueza e alguns a equabilidade, têm tornado-se pouco preditivos em termos de estrutura e funcionamento das comunidades (Cianciaruso et al. 2009). Desta forma, medidas de diversidade que incluam informações filogenéticas estão sendo cada vez mais utilizadas, uma vez que além de perder espécies em números, pode-se estar perdendo em termos de história evolutiva das comunidades, informações que são capturadas pelas relações filogenéticas. Essas informações são importantes para entender os mecanismos que determinam a coexistência de espécies em determinadas assembleias de plantas (Santos et al. 2010; Gonzalez et al. 2010), além de permitir verificar a influência de alterações do habitat nas relações de parentesco entre as espécies (Santos et al. 2010).

OBJETIVOS:

Esta tese teve como objetivo principal avaliar o efeito da perda de habitat na diversidade filogenética das assembleias de plantas arbóreas juvenis e adultas da Mata Atlântica do Sul da Bahia.

Objetivos específicos:

Capítulo 1 – Capítulo que teve como objetivo avaliar o efeito das perturbações antrópicas na diversidade filogenética de plantas através de uma meta-análise.

Capítulo 2 – Este capítulo teve como objetivo avaliar o efeito da redução de hábitat na divergência, estrutura e riqueza filogenética de assembleias de plantas arbóreas em paisagens da Mata Atlântica do sul da Bahia. Foram verificados os efeitos sobre os juvenis e os adultos.

Capítulo 3 – Neste capítulo, o objetivo foi avaliar a influência da perda de hábitat na β diversidade taxonômica e filogenética em paisagens da Mata Atlântica do sul da Bahia, com as diferentes respostas nas assembleias de juvenis e adultos arbóreos e entre elas. Bem como considerar as assembleias quanto às espécies tolerante e intolerantes à sombra. Foram também avaliados os efeitos da quantidade de borda e distância entre os sítios como preditores da β diversidade.

- Cianciaruso, M.V., Silva, I.A., Batalha, M.A. 2009. Diversidades filogenética e funcional: novas abordagens para a ecologia de comunidades. Biota Neotropica 9 (3): 1-11.
- Fahrig, L. 2013. Rethinking patch size and isolation effects: the habitat amount hypothesis. Journal of Biogeography 40 (9):1649–1663.
- García, D., Chacoff, N.P., 2007. Scale-dependent effects of habitat fragmentation on hawthorn pollination, frugivory, and seed predation. Conservation Biology 21: 400–11.
- Gardner, T.A., Barlow, J., Chazdon, R., Ewers, R.M., Harvey, C.A., Peres, C.A., Sodhi, N.S. 2009. Prospects for tropical forest biodiversity in a human-modified world. Ecology Letters 12: 561-582.
- Gonzalez, M., Roger, A., Courtois, E., Jabot, F., Norden, N., Paine, C.E.T., Baraloto, C., Thébaud, C., Chave, J. 2010. Shifts in species and phylogenetic diversity between sapling and tree communities indicate negative density dependence in a lowland rain forest. Journal of Ecology 98:137–146.
- Karp, D.S., Rominger, A.J., Zook, J., Ranganathan, J., Ehrlich, P.R., Daily, G.C. 2012. Intensive agriculture erodes β-diversity at large scales. Ecology Letters 15: 963-970.
- Kuussaari, M., Bommarco, R., Heikkinen, R.K., Helm, A., Krauss, J., Lindborg, R., Ockinger, E., Pärtel, M., Pino, J., Rodà, F., Stefanescu, C., Teder, T., Zobel, M., Steffan-Dewenter, I. 2009. Extinction debt: A challenge for biodiversity conservation. Trends in Ecology & Evolution 24:564–71.
- Markl, J.S., Schleuning, M., Forget, P.M., Jordano, P., Lambert, J.E., Traveset, A., Wright, S.J., Böhning-Gaese, K. 2012. Meta-Analysis of the Effects of Human Disturbance on Seed Dispersal by Animals. Conservation Biology 26: 1072–1081.
- Melo, F.P.L., Arroyo-Rodríguez, V., Fahrig, L., Martínez-Ramos, M., Tabarelli, M. 2013 On the hope for biodiversity-friendly tropical landscapes. Trends in Ecology and Evolution 28: 461-468.
- Metzger, J.P., Martensen, A.C., Dixo, M., Bernacci, L.C., Ribeiro, M.C., Teixeira, A.M.G., Pardini, R. 2009. Time-lag in biological responses to landscape changes in a highly dynamic Atlantic forest region. Biological Conservation 142:1166–1177.

- Ribeiro, M.C., Metzger, J.P., Martensena, A.C., Ponzoni, F.J., Hirotac, M.M. 2009. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation 142: 1141–1153.
- Santos, B.A., Arroyo-rodriguez, V., Moreno, C.E., Tabarelli, M. 2010. Edge-related loss of tree phylogenetic diversity in the severely fragmented Brazilian Atlantic Forest. Plos one 5(9): e12625.
- Solar, R.R.C., Barlow, J., Ferreira, J., Berenguer, E, Lees, A.C., Thomson, J.R., Louzada, J., Maués, M., Moura, N.G., Oliveira, V.H.F., Chaul, J.C.M., Schoereder, J.H., Vieira, I.C.G., Mac Nally, R., Gardner, T.A. 2015. How pervasive is biotic homogenization in human-modified tropical forest landscapes? Ecology Letters 18(10): 1108-1118.
- Tabarelli, M., Pinto, L.P., Silva, J.M.C., Costa, C.M.R. 2005. Espécies ameaçadas e planejamento da conservação. Capítulo 8. pp 86-94. *In*: Galindo-Leal, C., Câmara, I. G. (eds.). Mata Atlântica: Biodiversidade, ameaças e perspectivas. Fundação SOS Mata Atlântica- Conservação internacional. Belo Horizonte, 471 p.
- Tabarelli, M., Lopes, A.V. 2008. Edge-effects drive Tropical Forest fragments towards an early-successional system. Biotropica 40(6): 657–661.
- Tilman, D., May, R.M., Lehman, C.L., Nowak, M.A. 1994. Habitat destruction and the extinction debt. Nature 371:65–66.
- Whittaker, R.J., Willis, K.J., Field, R. 2001. Scale and species richness: Towards a general, hierarchical theory of species diversity. Journal of Biogeography 28:453–470.

<u>Capítulo 1</u>

Efeito das perturbações antrópicas na diversidade filogenética de plantas: Uma meta-análise

EFEITO DAS PERTURBAÇÕES ANTRÓPICAS NA DIVERSIDADE FILOGENÉTICA DE PLANTAS: UMA META-ANÁLISE

Edyla Ribeiro de Andrade¹, Romeo A. Saldaña-Vázquez², Eliana Cazetta¹

1. PPG Ecologia e Conservação da Biodiversidade, Laboratório de Ecologia Aplicada à Conservação, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado km 16, 45662-900, Ilhéus, Bahia, Brazil

2. Laboratorio de Ecología Funcional, Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, CP 58190, Morelia, Michoacán, Mexico

E-mail: edylaa@hotmail.com

RESUMO

As perturbações antrópicas têm transformado os ecossistemas de forma extensiva, causando perda de diversidade e moldando as comunidades ecológicas remanescentes. Além do efeito direto de eliminação de espécies, essas perturbações também desencadeiam uma série de alterações que afetam indiretamente a sobrevivência das demais. Todos esses efeitos levam a mudanças na diversidade de vários grupos, incluindo as plantas, levando na maioria dos casos a um empobrecimento em termos de composição taxonômica. No entanto, uma abordagem baseada apenas em número de táxons não leva em consideração as diferenças ecológicas entre as espécies. Dessa forma, medidas que incorporem informações filogenéticas, que permitem entender a história evolutiva, os mecanismos que determinam a coexistência de espécies e verificar a influência das alterações do habitat nas relações de parentesco, estão sendo cada vez mais utilizadas. Além disso, com o reconhecimento da utilidade de se compreender as relações filogenéticas para responder questões ecológicas, aliado à crescente disponibilização da filogenia para muitos grupos taxonômicos, houve uma proliferação de diferentes métricas filogenéticas, dificultando sínteses sobre seus efeitos. Desta forma, com o intuito de preencher essas lacunas, este estudo avaliou através de uma meta-análise, quais os efeitos dos distúrbios antrópicos sobre a diversidade e estrutura filogenética das comunidades de plantas em escala global. Além disso, verificou-se a existência de variação na diversidade filogenética com o tipo de distúrbio, de floresta e de índice utilizado. Foram utilizados 13 artigos para a meta-análise, que forneceram 15 relações que foram associadas a sete diferentes tipos de distúrbios

antropogênicos. Os resultados indicaram que as perturbações antrópicas reduziram a diversidade filogenética de plantas. Não foi encontrada diferença entre os resultados obtidos por diferentes índices. Além disso, não houve diferença na relação entre os tipos de distúrbio, no entanto, estudos que avaliaram sucessão ecológica (pós-distúrbio) apresentaram uma relação de perda de diversidade filogenética. Ao considerar os tipos florestais, não foram encontradas diferenças no tipo de efeito encontrado, no entanto apenas a floresta tropical apresentou perda significativa de diversidade filogenética dentre os tipos avaliados. Dessa forma, esta análise permitiu verificar que apesar de alguns casos terem encontrado aumento ou nenhuma alteração na diversidade filogenética, existe um efeito geral de perda de diversidade e/ou aumento do agrupamento filogenético das comunidades de plantas frente aos distúrbios antropogênicos. Este efeito é independente do índice utilizado, do tipo de distúrbio e do tipo florestal, evidenciando a perda de história evolutiva, implicando na susceptibilidade das comunidades vegetais no atual contexto de contínuo aumento da modificação das paisagens naturais remanescentes pelo homem.

Palavras-chave: Distúrbios antrópicos, estrutura filogenética, floresta tropical, comunidades vegetais.

INTRODUÇÃO

A perda de biodiversidade vem se agravando substancialmente nos últimos tempos. Os ecossistemas estão sendo fortemente afetados e moldados pelos distúrbios antropogênicos (Hoekstra et al., 2004), o homem tem transformado o meio natural de forma rápida e extensiva pela sua demanda por recursos, ocasionando uma perda irreversível e significativa da diversidade da vida na terra (Millennium Ecosystem Assessment, 2005). A remoção de florestas e substituição de áreas naturais por paisagens antrópicas resultam em um processo considerado como principal ameaça à biodiversidade, a perda de habitat (Laurance et al., 2014; Venter et al., 2016). A perda de habitat tem o efeito direto de eliminação de indivíduos e até extinção de espécies, mas também desencadeia uma série de alterações que afetam indiretamente a sobrevivência de muitas outras espécies. Além disso, pode provocar uma resposta da geração futura, chamado de débito de extinção, um efeito que pode continuar a surgir por décadas (Haddad et al., 2015). Alguns ecossistemas também podem ser afetados de maneira ainda mais acentuada, como por exemplo, as florestas tropicais, que com seu elevado endemismo, sofrem com altas taxas de extinção de espécies com a redução de área (Tabarelli et al., 2005). Isso torna

as comunidades mais susceptíveis à outras perturbações como invasão por espécies exóticas, corte seletivo, fogo, efeito de borda, entre outros efeitos da fragmentação (Tabarelli et al., 2004).

Espécies de plantas também são afetadas por diversos fatores gerados por esses distúrbios, como alterações nas condições microclimáticas e a perda de interações com polinizadores e/ou dispersores (Garcia & Chacoff, 2007; Markl et al., 2012). Fontúrbel et al. (2015), em um estudo de meta-análise, encontraram que a degradação de hábitat tem um efeito negativo na diversidade de animais dispersores de sementes e a fragmentação reduz as taxas de interação. A magnitude desses efeitos seria dependente do grupo taxonômico, tipo de distúrbio e região geográfica (Fontúrbel et al., 2015). A alteração desses processos vai influenciar o sucesso reprodutivo e a consequente manutenção da diversidade das comunidades. Além disso, pode haver uma homogeneização da floresta, pela proliferação de pioneiras, espécies de estágios iniciais de sucessão ecológica (Lôbo et al., 2011). Desta forma, essas alterações no habitat geralmente culminam em uma perda de diversidade de plantas, além de um empobrecimento em termos de composição de espécies, embora Gerstner et al. (2014) tenha observado alguns casos em que alterações no habitat tenham aumentado a riqueza de espécies.

Nesse contexto, entender como os distúrbios antrópicos afetam a biodiversidade é cada vez mais necessário, principalmente sendo este um processo acelerado e contínuo que necessita de ações diretas para conservação das espécies ainda existentes. Contudo, apenas o número de espécies não reflete todos os níveis de diversidade biológica do habitat. Os índices de diversidade tradicionais, que consideram apenas a riqueza e/ou abundância relativa, têm se tornado pouco preditivos em termos de estrutura e funcionamento das comunidades (Cianciaruso et al., 2009). A diversidade de espécies considera todas as espécies como sendo igualmente distintas independente dos traços e características que compartilham filogeneticamente (Chao et al., 2010), assim, uma abordagem baseada apenas em número de táxons não leva em conta diferenças ecológicas entre as espécies. Desta forma, medidas de diversidade que incluam informações filogenéticas estão sendo cada vez mais utilizadas (ver: Webb et al., 2002, Cianciaruso et al., 2009; Andrade et al., 2015; Ribeiro et al., 2016; Santos-Silva et al., 2018). Diferenças genéticas, fenotípicas, comportamentais e/ou fenológicas entre as linhagens evolutivas são refletidas no padrão de ramificação e datações de uma árvore filogenética (Harvey & Pagel, 1991). Essas informações são importantes para entender os mecanismos que determinam a coexistência de espécies em determinadas assembleias de plantas (Santos et al., 2010; Gonzalez et al., 2010), além de permitir verificar a influência de alterações do habitat nas relações de parentesco entre as espécies (Santos et al., 2010). Para melhor entender e prever as mudanças na biodiversidade causadas pelo homem é preciso levar

em conta todos os componentes da biodiversidade, inclusive a diversidade filogenética, que pode guiar esforços de conservação e manejo (Zhang et al., 2014).

Recentemente, essa abordagem tem ganhado atenção e vários estudos que avaliam o efeito de perturbações na estrutura e diversidade filogenética das comunidades tem surgido (Santos et al., 2010; Arroyo-Rodrígues et al., 2012; Zhang et al., 2014; Andrade et al., 2015). No entanto, os mesmos apresentam resultados controversos. Arroyo-Rodriguez et al. (2012) encontraram uma manutenção da diversidade filogenética mesmo em uma paisagem altamente fragmentada de floresta tropical, porque a extirpação local de espécies de árvores não ocorre eliminando linhagens inteiras. No mesmo tipo de floresta, Santos et al. (2010) no Brasil encontraram uma redução da diversidade filogenética em bordas de floresta, mas sem efeito do tamanho do fragmento. Outros estudos encontraram redução da diversidade ou alteração na estrutura filogenética indicando aumento no agrupamento filogenético devido a perturbações antrópicas (Knapp et al., 2008; Coca & Pausas, 2009; Ding et al., 2012; Letcher et al., 2012; Andrade et al., 2015). Por outro lado, alguns encontram um aumento na diversidade ou uma estrutura filogenética mais dispersa na área de distúrbio ou pós-distúrbio, devido principalmente a incorporação de espécies não nativas (Liu, 2015; Peralta et al., 2015).

Diante desse aumento de estudos e com evidências de efeitos contrastantes, torna-se necessário sintetizar essas informações para avaliar os possíveis padrões. No entanto, esses estudos utilizam diferentes índices para mensurar as respostas filogenéticas. Este aumento quantitativo de diferentes métricas filogenéticas é devido ao reconhecimento da importância de compreensão das relações filogenéticas para responder questões ecológicas, aliado à crescente disponibilização da filogenia para muitos grupos taxonômicos (Tucker et al., 2017). Entretanto, essas diferentes métricas são muitas vezes utilizadas para responder questões similares, causando muitas vezes a circularidade/redundância no uso de métricas e dificultando sínteses e generalizações dos resultados existentes. Desta forma, este estudo reuniu informações da literatura sobre os distúrbios antrópicos e a diversidade filogenética de plantas com o objetivo de sintetizar e responder as seguintes questões: (i) Quais são os efeitos filogenéticos (diversidade e estrutura) dos distúrbios antrópicos nas comunidades de plantas? (ii) Esses efeitos variam com o tipo de distúrbio avaliado? (iii) Esses efeitos variam com o tipo de floresta? Qual o efeito das perturbações na diversidade filogenética de plantas tropicais? (iv) O efeito encontrado varia com o tipo de índice utilizado para mensurar a diversidade filogenética?

MÉTODOS

Foi realizada uma pesquisa bibliográfica em Setembro de 2015 nas plataformas de busca Scopus, Web of Science e Google Schoolar. A busca foi feita somente no idioma inglês e não foi limitado período de tempo inicial de publicação (intervalo de busca até setembro/2015), tendo em vista que a maioria dos estudos com essa abordagem são recentes. Foi utilizada a palavra "phylogenetic diversity" combinada com o operador booleano "AND" e as seguintes palavras: "fragmentation", "habitat loss", "forest loss", "logging", "forest cover", "disturbance", "fire", "pertubation", "edge effect" e "invasive plants". Foram selecionados apenas os estudos que avaliaram a diversidade filogenética de plantas (qualquer hábito ou estágio ontogenético). Além disso, foram excluídos os estudos que não tratavam de perturbações ou que eram de perturbações de origens naturais (ex. fogo natural, inundação de rio, estresse de nutrientes em ambiente natural) tendo em vista o objetivo do presente estudo.

Os índices de diversidade filogenética utilizados nos estudos foram: PD – Diversidade filogenética, índice de Faith "phylogenetic diversity – Faith's PD index"; NRI –índice de parentesco líquido, do inglês "net relatedness index"; NTI – índice do táxon mais próximo, do inglês "nearest taxon index"; MPD – distância filogenética média entre todas as combinações de pares de espécies, do inglês "mean pairwise distance"; MNTD – distância filogenética média do parente mais próximo de todas as espécies, do inglês "mean nearest taxon distance"; PSE – medida da equabilidade filogenética das espécies, do inglês "phylogenetic species evenness"; PSV – medida da variabilidade filogenética das espécies, do inglês "Rao's quadratic entropy index"; MNND - a distância média do vizinho mais próximo, do inglês "mean nearest neighbor distance"; Avpd – Distintividade média filogenética, do inglês "average phylogenetic distance"; MIND – distância filogenética média filogenética média, do inglês "mean phylogenetic distance" e MinPDist – distância filogenética mínima, do inglês "mean phylogenetic distance".

Muitos estudos não apresentaram resultados de relações estatísticas, portanto não foi possível realizar a meta-análise com o total de estudos selecionados, de forma que foram realizados dois tipos de análise de síntese (contagem de votos e meta análise). Para verificar o efeito dessas perturbações na diversidade filogenética, foram incluídos todos os estudos (totalizando 28 estudos) e registrado o tipo de efeito: positivo (aumento da diversidade filogenética ou dispersão filogenética após ou ao longo do distúrbio), negativo (perda de diversidade filogenética ou agrupamento filogenético após ou ao longo do distúrbio) ou sem efeito nas relações filogenéticas. Foi então realizada uma análise de "contagem de votos".

Quando um mesmo estudo apresentava efeito para dois tipos diferentes de distúrbio, era contabilizado um voto para cada um, o que totalizou 31 votos. Posteriormente, foi realizado um teste qui-quadrado. A contagem de votos é um método de sumarizar os efeitos encontrados de forma simples, direta e com resultado intuitivo (Rosenberg et al., 2000).

Para os estudos que apresentaram de forma clara a relação estatística (fornecendo valores das relações filogenéticas com a perturbação - r², t, F ou Z) foi então realizada uma meta análise, usando esses valores como medidas de efeito transformadas a r (Pearson correlation coefficient). As transformações foram realizadas baseadas em fórmulas propostas por Rosenberg et al. (2000). Excluímos os estudos que utilizaram χ^2 por mostrar uma diferença em relação ao modelo nulo e não diretamente comparativo entre a variável considerada como perturbação. Para uma interpretação gráfica mais representativa, foram incluídos sinais negativos no valor do r para todas as observações que apresentaram efeitos negativos da perturbação sobre a diversidade filogenética. Foram utilizados os valores dos diferentes índices ainda que de um mesmo estudo, obtendo um total de 41 observações. Os resultados obtidos por diferentes índices foram avaliados através do teste de variáveis moderadoras. Não foi encontrada diferença entre os índices (QM= 5,6019; df = 8; P= 0,6917), desta forma, para garantir a independência dos dados e evitar pseudo-réplicas, foi mantido apenas um valor de um dos índices para cada estudo. Apenas quando o estudo apresentava índices calculados para bancos de dados diferentes (diferentes comunidades de plantas ou diferentes estágios ontogenéticos) foi mantido mais de um valor. Para isso foi usado preferencialmente o índice MPD, sempre que o mesmo estava disponível, por ser o índice apresentado pela maioria dos estudos, seguido do NRI. Posteriormente, foi realizada a meta-análise com 13 estudos (N=15 observações).

Foram utilizadas como variáveis moderadoras o tipo de distúrbio e o tipo de floresta. Para verificar um possível viés nos resultados devido à assimetria no número de casos positivos e negativos encontrados nas publicações foi realizado o teste 'trim and fill', que estima o número de estudos que faltariam para o balanceamento (Duval & Tweedie, 2000). Foi utilizado o pacote *metafor* (Viechtbauer, 2015) no software R (R core team, 2014).

Quanto às classificações das perturbações, manteve-se na maior parte a definição usada pelos autores, de forma que foram agrupadas: (1) Perda de habitat = "forest loss", "habitat loss"; (2) Efeito de borda = "edge effect", "edge gradient"; (3) Corte seletivo = "logging"; (4) Plantas exóticas = "alien species", "invasive plants"; (5) Fragmentação = "fragmentation", "forest disturbance" com características de dentro do fragmento (matriz, dossel,...); (6) Distúrbio antropogênico = aqueles em que não foi possível distinguir o tipo de distúrbio, que apenas definiu-se no artigo como "anthropogenic disturbance"; (7) Retirada de vegetação = "plowed",

"heavily cleared by machinery"; (8) Sucessão = Estudos que trataram de estágios sucessionais vegetacionais, sendo considerado efeito negativo quando a diversidade filogenética era menor nos estágios iniciais de sucessão; (9) Co-extinção planta-polinizador = "coextinction plant-pollinator" ocasionados por perturbações antrópicas; (10) Urbanização = "housing density"; (11) Fogo = "Fire frequency", "post-fire sucession".

RESULTADOS E DISCUSSÃO

Visão Geral sobre o efeito das perturbações antrópicas na diversidade filogenética de plantas (Contagem de votos)

Foram encontrados 28 trabalhos que avaliaram os efeitos de perturbações antrópicas na diversidade filogenética de plantas (Tabela 1). Desses, 12 avaliaram conjuntamente métricas de diversidade taxonômicas tradicionais (riqueza e/ou abundância), 2 avaliaram métricas de diversidade funcional e filogenética e 5 avaliaram as três abordagens conjuntamente.

Tabela 1 - Relação dos artigos selecionados para a síntese de contagem de votos, que avaliaram a relação entre perturbações de origem antrópica e a diversidade filogenética de plantas. Os índices de diversidade filogenéticas utilizados nos estudos foram: PD – Índice de diversidade filogenética de Faith; NRI – índice de parentesco líquido; NTI – índice do táxon mais próximo; MPD – distância filogenética média; MNTD – distância filogenética média do parente mais próximo; PSE – equabilidade filogenética das espécies; PSV – variabilidade filogenética das espécies; Rao- índice de Rao; MNND – distância média do vizinho mais próximo; Avpd – distância filogenética; MeanPDist – distância filogenética média e MinPDist – distância filogenética média filogenética; MeanPDist – distância filogenética média e MinPDist – distância filogenética mínima.

Artigos	Perturbação	Efeito	Índices	Tipo de floresta
Vieira et al 2013	Co-extinção	Negativo	PD	Simulações
<i>Field et al.</i> , 2015	planta-polinizador			matemáticas
<i>Ding et al.</i> , 2012	Corte seletivo	Negativo	NRI, NTI	Floresta tropical
Toyama et al., 2015	Corte seletivo	o Negativo	MPD, PD,	Floresta tropical
			MNTD	
Brunbjerg et al.,	Distúrbio	Negativo	NRI	Vegetação de
2012	antropogênico	iteguitte		dunas
Zhang et al. 2014	Distúrbio	Sem efeito	NRI	Floresta boreal
2.1.1.15 01 11., 2011	antropogênico	Seni Ciento		

Peralta et al., 2015	Efeito de borda	Positivo/ Sem efeito	PSE, PSV	Floresta temperada
Santos et al., 2010	Efeito de borda	Negativo	MPD, MNTD, NRI, NTI	Floresta tropical
Forrestel et al., 2014	Fogo	Negativo	NRI	Savana
Larkin et al., 2015	Fogo	Sem efeito	MPD	Pradaria
Verdú & Pausas, 2007	Fogo	Negativo	MPD, NRI	Vegetação mediterrânea
Verdú et al., 2009	Fogo	Sem efeito	MPD, NRI, PSV	Vegetação mediterrânea
Arroyo-Rodríguez et al., 2012	Fragmentação	Sem efeito	MPD, MNTD, NRI, NTI	Floresta tropical
Grass et al., 2015	Fragmentação	Negativo	Rao, MPD	Floresta subtropical
Munguía-Rosas et al., 2014	Fragmentação	Negativo	PD, MPD, MNTD, NRI, NTI	Floresta tropical
Santos et al., 2010	Fragmentação	Sem efeito	MPD, MNTD, NRI, NTI	Floresta tropical
Santos et al., 2014	Fragmentação	Negativo	MPD, NRI	Floresta tropical
Liu, 2015	Fragmentação	Positivo	PD, MPD, MNND, NRI, NTI	Floresta tropical
Andrade et al., 2015	Perda de hábitat	Negativo/ Sem efeito	MPD, MNTD, NRI, NTI	Floresta tropical
Grass et al., 2015	Perda de hábitat	Sem efeito	Rao, MPD	Floresta subtropical
Čeplová et al., 2015	Plantas exóticas	Negativo	Avpd	Fragmentos urbanos

Lapiedra et al., 2015	Plantas exóticas	Negativo	PD, MeanPDist, MinPDist, MNTD	Vegetação mediterrânea
Coca & Pausas, 2009	Retirada de vegetação	Negativo	PD	Floresta de "corkoak"
Dinnage, 2009	Retirada de vegetação	Sem efeito	PSV, PSE	Floresta temperada
Letcher, 2010	Sucessão	Sem efeito	MPD, NRI, NTI	Floresta tropical
Letcher et al., 2012	Sucessão	Negativo	NRI, NTI	Floresta tropical
Mo et al., 2013	Sucessão	Negativo	PD, PSV, PSE, NRI, NTI	Floresta tropical
Norden et al., 2012	Sucessão	Negativo	MPD, NRI	Floresta tropical
Purschke et al., 2013	Sucessão	Negativo	MPD	Savana
Whitfeld et al., 2012	Sucessão	Negativo	MPD, MNTD, NRI, NTI	Floresta tropical
Knapp et al., 2012	Urbanização	Negativo	AvPD, MNTD, MPD, NRI, NTI	Áreas urbanas (jardins)

O efeito das perturbações antrópicas foi negativo na maioria dos casos (64,5%) ou seja, houve redução na diversidade filogenética e/ou o aumento no agrupamento filogenético. Ao realizar a análise de contagem de votos, seguida de um qui-quadrado, o efeito negativo foi significativamente diferente e superior ao efeito positivo e nulo ($\chi^2 = 15,93$; df = 2; P<0,0005).

Os estudos com efeitos contrários ao padrão geral, ou seja, com aumento da diversidade filogenética foram Liu (2015) e Peralta et al. (2015). Porém, ressalta-se que no primeiro caso, o aumento na diversidade filogenética ocorre por uma alta substituição de espécies com a fragmentação, na qual espécies tolerantes à sombra estão sendo perdidas e espécies exóticas e ruderais adicionadas à comunidade, sendo estas últimas, mais distantes filogeneticamente (o

que aumenta os valores de diversidade filogenética). O trabalho indica também que esta substituição ocorre em função do processo de exclusão competitiva associada às condições mais secas (alterações microclimáticas) na floresta após a fragmentação (*sensu* Murcia, 1995), e que apesar das comunidades remanescentes terem uma estrutura filogenética mais dispersa, o autor reconhece a perda de funções e estabilidade devido à diversidade atual ser diferente da encontrada em florestas primárias nativas.

Peralta et al. (2015) avaliaram o efeito de borda e encontraram uma variabilidade de plantas significativamente maior na borda da floresta nativa do que no interior quando avaliadas todas as plantas nativas e exóticas e sem efeito quando consideradas apenas espécies nativas. De maneira similar, os autores sugerem que este incremento de variabilidade filogenética nas bordas florestais seja devido à presença/aumento de espécies não-nativas e não aparentadas na filogenia. Nesses dois casos, nota-se que a classificação ou avaliação da diversidade filogenética em grupos funcionais (tolerância à sombra ou nativa/não nativa) ajudam a entender verificar que ainda que 0 resultado encontrado seja 0 da e aumento diversidade/dispersão/variabilidade filogenética, a comunidade florestal remanescente não está sendo beneficiada com o distúrbio.

Os tipos de perturbações antrópicas mais avaliados foram fragmentação e sucessão pósdistúrbio, com 6 estudos cada (Fig. 1). A maioria das relações de diversidade filogenética da comunidade de plantas com estes dois tipos de distúrbio também foi negativa. Vale ressaltar que estudos sobre a fragmentação de habitat, em geral não avaliam a fragmentação propriamente dita o que pode gerar conclusões diferentes sobre a magnitude e direção dos efeitos (Fahrig, 2003). Muitas vezes os estudos não diferenciam os efeitos da fragmentação e da perda de habitat, ou tratam de efeitos secundários da fragmentação (efeito de borda, isolamento, etc.). O que pode justificar o maior número de estudos nesse tipo de distúrbio, devido a sua grande amplitude e talvez uma sobreposição de outros efeitos dentro dessa classificação. Contudo, ainda assim optou-se por manter a classificação utilizada pelos autores. Além disso, os estudos de sucessão não definem o tipo específico de distúrbio avaliado, apenas o efeito posterior, o que pode estar deixando de contribuir para uma avaliação mais específica do tipo de perturbação.

Figura 1 – Distribuição dos efeitos sobre a diversidade filogenética encontrados pelos dois tipos de perturbações antrópicas mais avaliados (Fragmentação e Sucessão ecológica pós-distúrbio). Barra preta: sem efeito; barra cinza: efeito negativo sobre a diversidade filogenética; barra branca: efeito positivo sobre a diversidade filogenética.

Os índices mais utilizados pelos estudos foram MPD que foi medido por 16 estudos e NRI, medido por 18 estudos (Tabela 1). Estes dois índices foram propostos por Webb (2000), que além de propor os índices, criou dois programas computacionais para calculá-los, o Phylomatic (Webb & Donoghue, 2005) e o Phylocom (Webb et al., 2008), possivelmente contribuindo assim para sua maior utilização nesse contexto. O primeiro índice, o MPD tratase da média da distância filogenética (comprimento dos ramos da árvore filogenética) de todas as combinações de pares de espécies e o segundo, o NRI, retira o efeito da riqueza sobre o índice, avaliando se as espécies encontradas são mais ou menos agrupadas do que se esperaria ao acaso. Atualmente também é possível calcular estes índices através do programa R (R Core Team, 2014) utilizando o pacote '*Picante*' (Kembel et al., 2010).

Efeito dos tipos de perturbações antrópicas na diversidade filogenética de plantas: meta-análise

Foram utilizados os resultados de 15 relações de diversidade filogenética de plantas com perturbações antrópicas, provenientes de 13 estudos. Foi encontrado um efeito global de redução de diversidade filogenética com as perturbações antrópicas (r=-0,31; IC= -0.59 - -0.04; P=0,02), com uma alta heterogeneidade (Q= 715,54; df=14; P<0.0001; I²=98.04%). Após

realizar o procedimento de '*trim and fill*', a significância dos resultados não foi alterada, sendo estimado que não fazem falta estudos de nenhum dos lados para o balanceamento de casos positivos e negativos e, portanto o resultado não está sendo enviesado por uma possível assimetria de amostragem.

Não houve diferença na relação entre os tipos de distúrbio e a diversidade filogenética (Q=11,50; df = 7; P=0,12; intervalos de confiança se sobrepõem, ver Fig. 2), ou seja, os efeitos dos distúrbios sobre as relações de parentesco das comunidades de plantas independem do tipo específico avaliado. Além disso, a sucessão é o único tipo de distúrbio que apresenta uma relação significativa de perda de diversidade filogenética (r=-0,67; P=0,0053; Fig. 2). Dentre o total de relações usadas nesta meta-análise, este tipo de distúrbio foi o mais avaliado (N=4), seguido de fragmentação (N=3). Os demais distúrbios foram encontrados em apenas um ou dois estudos.

Os padrões de co-ocorrência de espécies em uma comunidade podem ser resultado de processos ecológicos como competição entre espécies ou por filtros ambientais, que podem ser analisados através das medidas de diversidade filogenética (Webb et al., 2002). Neste caso, foi encontrado um maior agrupamento filogenético como efeito dos distúrbios antrópicos, ou seja

o aumento do grau de parentesco nas comunidades mais perturbadas, esse padrão de agregação pode ser reflexo de filtros ambientais. Segundo Webb et al. (2002), o aumento da agregação filogenética indica um papel dominante dos filtros ambientais na estruturação das comunidades, favorecendo altos níveis de co-ocorrência entre espécies próximas filogeneticamente. Adicionalmente, parte do princípio de que os traços funcionais sejam conservados ao longo da filogenia (Ackerly, 2003; Webb et al., 2002).

Independente do tipo de distúrbio avaliado, o efeito global foi de redução de diversidade filogenética e/ou aumento do agrupamento. Essa redução em geral é encontrada quando a perturbação elimina clados inteiros ou elimina espécies sem parentes próximos na filogenia, esses dois casos levam a uma maior perda de informação genética (Williams et al., 1991). Por outro lado, é sugerido que quando há uma perda de espécies de forma randômica ou uniforme ao longo da filogenia, essa perda resulta em poucas e fracas alterações na estrutura e diversidade filogenética, e, portanto, um resultado de ausência de efeito dos distúrbios, como encontrado no trabalho de Arroyo-Rodríguez et al. (2012). Os autores também sugerem que essa manutenção da diversidade filogenética, mesmo em uma paisagem altamente fragmentada, pode ser reflexo de um baixo conservadorismo filogenético de traços associados com a vulnerabilidade à fragmentação florestal.

Perturbações antrópicas na diversidade filogenética de plantas em diferentes tipos de florestas

Foram também utilizados os resultados de 15 relações de diversidade filogenética de plantas com perturbações antrópicas nos diferentes tipos de floresta, provenientes de 13 estudos. Os resultados mostraram que não há diferenças de efeito entre os tipos de floresta (Q=17,12; df=7; P=0,0166), no entanto apenas a floresta tropical apresentou perda significativa de diversidade filogenética (r=-0,47; P=0,0012; IC=-0,75 – -0,18; Fig. 3). A detecção da redução significativa de diversidade apenas nas florestas tropicais pode estar associada com o maior número de estudos terem sido desenvolvidos nesta, mas também com a alta biodiversidade aliada ao elevado grau de ameaça encontrada neste tipo florestal (Tabarelli et al., 2005). Das 15 observações, 9 pertenceram às florestas tropicais, de forma que nos demais, o reduzido número de estudos pode ter contribuído para seu largo intervalo de confiança e, portanto ausência de efeito significativo.

Figura 3 – Gráfico de árvore da relação entre efeito dos distúrbios antropogênicos nos diferentes tipos de floresta na diversidade filogenética de plantas. As barras representam os intervalos de confiança e os pontos pretos representam os valores do coeficiente de correlação de Pearson (r).

A zona de florestas tropicais coincide com áreas bastante populosas, exercendo uma demanda de recursos e uma forte pressão de atividades antrópicas sobre este bioma (Cincotta et al., 2000, Venter et al., 2016). Isto pode ser notado por exemplo no caso da Mata Atlântica brasileira, que possui apenas 12,5% de vegetação original (Ribeiro et al., 2009). Vulneráveis a estas perturbações, estima-se que existam cerca de dois terços de toda as espécies de organismos do planeta entre os trópicos de Capricórnio e Câncer (Raven, 1980; Pimm & Raven, 2000). Deste modo, já é reconhecido há algum tempo que as florestas tropicais são áreas prioritárias em termos de esforços de pesquisa (Raven, 1980), explicando o maior número de estudos encontrados neste bioma. Além disso, as florestas tropicais predominam entre as áreas definidas como *hotspots* da biodiversidade (Myers et al., 2000), correspondendo a 18 dos 25 habitats assim classificados. Esses *hotspots* apresentam uma elevada riqueza de espécies, inclusive vegetais (cerca de 44% das espécies de plantas de todo o mundo), alta taxa de endemismo e com alto risco de extinções (Myers et al., 2000).

Além do processo já conhecido de homogeneização da biota nas florestas tropicais, onde há uma proliferação de espécies pioneiras e/ou adaptadas ao distúrbio (Tabarelli et al., 2012), com os resultados encontrados, salientamos o efeito negativo das perturbações antrópicas também na diversidade filogenética das plantas. As espécies que sobrevivem em um habitat com condições ambientais particulares (ex: resultantes de alterações antrópicas) tendem a exibir uma similaridade de traços fenotípicos e serem agrupadas na filogenia (menor diversidade filogenética/de história evolutiva), com a força estruturadora sendo o filtro ambiental (Webb, 2000; Webb et al., 2002).

OBSERVAÇÕES FINAIS

Foi encontrado um efeito predominante de redução de diversidade filogenética com os distúrbios antrópicos tanto quando avaliado por contagem de votos quanto avaliado quantitativamente a força das relações através da meta-análise. Apesar da crescente utilização de variados índices para avaliar as questões filogenéticas, nossos resultados sugerem que isto não interfere no efeito global encontrado. Desse modo pode haver uma complementaridade dos índices ou uma eficiência similar entre eles em encontrar padrões filogenéticos em comunidades. Além disso, não foram encontradas evidências de diferenças de efeito entre os tipos de distúrbio antrópico e tipo de floresta avaliada. No entanto, a significância estatística de perda de diversidade filogenética quando avaliados separados, só foi encontrada para a perturbação do tipo sucessão ecológica (pós-distúrbio) e nas florestas tropicais. Esse tipo florestal apresenta um já conhecido empobrecimento de espécies, e salientamos com os resultados desse estudo a sua tendência de empobrecimento também filogenético.

Algumas lacunas foram detectadas como, por exemplo, o reduzido número de casos avaliando estas questões em outros tipos florestais além de florestas tropicais, sugerindo uma demanda de estudos. Além disso, a necessidade de melhor definir que tipo de distúrbio foi avaliado no estudo, tendo em vista que a utilização de termos gerais como distúrbio antropogênico ou avaliação dos estágios sucessionais pós-distúrbio dificultam a identificação do tipo de perturbação para incluir em uma síntese.

Por fim, a redução da diversidade filogenética leva a uma perda de história evolutiva e apontam para um papel dominante dos filtros ambientais estruturando essas comunidades remanescentes. Esse efeito ocorre de forma mais evidente nas florestas tropicais, que já estão severamente ameaçadas. De modo que, com uma menor diversidade e maior agrupamento filogenético frente aos distúrbios antrópicos, as florestas tendem a perder cada vez mais sua

capacidade de responder às futuras alterações antrópicas, colocando a conservação da biodiversidade e funcionamento dos ecossistemas em risco.

Literatura usada para a meta-análise:

- Andrade, E.R., Jardim, J.G., Santos, B.A., Melo, F.P.L., Talora, D.C., Faria, D., Cazetta, E., 2015. Effects of habitat loss on taxonomic and phylogenetic diversity of understory Rubiaceae in Atlantic forest landscapes. Forest Ecology and Management 349, 73–84. doi:10.1016/j.foreco.2015.03.049
- Arroyo-Rodríguez, V., Cavender-Bares, J., Escobar, F., Melo, F.P.L., Tabarelli, M., Santos, B. A., 2012. Maintenance of tree phylogenetic diversity in a highly fragmented rain forest. Journal of Ecology 100, 702–711. doi:10.1111/j.1365-2745.2011.01952.x
- Čeplová, N., Lososová, Z., Zelený, D., Chytrý, M., Danihelka, J., Fajmon, K., Láníková, D., Preislerová, Z., Rehorek, V., Tichý, L., 2015. Phylogenetic diversity of central-European urban plant communities: Effects of alien species and habitat types. Preslia 87, 1–16.
- Coca, M., Pausas, J., 2009. Regeneration traits are structuring phylogenetic diversity in cork oak (Quercus suber) woodlands. Journal of Vegetation Science 20, 1009–1015.
- Dinnage, R., 2009. Disturbance alters the phylogenetic composition and structure of plant communities in an old field system. PLoS One 4, e7071. doi:10.1371/journal.pone.0007071
- Grass, I., Brandl, R., Botzat, A., Neuschulz, E.L., Farwig, N., 2015. Contrasting taxonomic and phylogenetic diversity responses to forest modifications: comparisons of taxa and successive plant life stages in South African scarp forest. PLoS One 10, e0118722. doi:10.1371/journal.pone.0118722
- Lapiedra, O., Sol, D., Traveset, A., Vilà, M., 2015. Random processes and phylogenetic loss caused by plant invasions. Global Ecology and Biogeography 24, 774–785. doi:10.1111/geb.12310
- Letcher, S.G., Chazdon, R.L., Andrade, A.C.S., Bongers, F., van Breugel, M., Finegan, B., Laurance, S.G., Mesquita, R.C.G., Martínez-Ramos, M., Williamson, G.B., 2012. Phylogenetic community structure during succession: Evidence from three Neotropical forest sites. Perspectives in Plant Ecology, Evolution and Systematics 14, 79–87. doi:10.1016/j.ppees.2011.09.005
- Santos, B. A, Arroyo-Rodríguez, V., Moreno, C.E., Tabarelli, M., 2010. Edge-related loss of tree phylogenetic diversity in the severely fragmented Brazilian Atlantic forest. PLoS One 5, e12625. doi:10.1371/journal.pone.0012625
- Santos, B.A., Tabarelli, M., Melo, F.P.L., Camargo, J.L.C., Andrade, A., Laurance, S.G., Laurance, W.F., 2014. Phylogenetic impoverishment of amazonian tree communities in an experimentally fragmented forest landscape. PLoS One 9, e113109. doi:10.1371/journal.pone.0113109

- Whitfeld, T.J.S., Kress, W.J., Erickson, D.L., Weiblen, G.D., 2012. Change in community phylogenetic structure during tropical forest succession: evidence from New Guinea. Ecography (Cop.) 35, 821–830. doi:10.1111/j.1600-0587.2011.07181.x
- Zhang, J., Mayor, S.J., He, F., 2014. Does disturbance regime change community assembly of angiosperm plant communities in the boreal forest? Journal of Plant Ecology 7, 188–201. doi:10.1093/jpe/rtt068

REFERÊNCIAS

- Ackerly, D.D., 2003. Community assembly, niche conservatism, and adaptive evolution in changing environments. International Journal of Plant Sciences 164(S3), S165-S184
- Andrade, E.R., Jardim, J.G., Santos, B.A., Melo, F.P.L., Talora, D.C., Faria, D., Cazetta, E., 2015. Effects of habitat loss on taxonomic and phylogenetic diversity of understory Rubiaceae in Atlantic forest landscapes. Forest Ecology and Management 349, 73–84. doi:10.1016/j.foreco.2015.03.049
- Arroyo-Rodríguez, V., Cavender-Bares, J., Escobar, F., Melo, F.P.L., Tabarelli, M., Santos, B.A., 2012. Maintenance of tree phylogenetic diversity in a highly fragmented rain forest. Journal of Ecology 100, 702–711. doi:10.1111/j.1365-2745.2011.01952.x
- Brunbjerg, A.K., Borchsenius, F., Eiserhardt, W.L., Ejrnaes, R., Svenning, J.C., 2012. Disturbance drives phylogenetic community structure in coastal dune vegetation. Journal of Vegetation Science 23, 1082–1094. doi:10.1111/j.1654-1103.2012.01433.x
- Čeplová, N., Lososová, Z., Zelený, D., Chytrý, M., Danihelka, J., Fajmon, K., Láníková, D., Preislerová, Z., Rehorek, V., Tichý, L., 2015. Phylogenetic diversity of central-European urban plant communities: Effects of alien species and habitat types. Preslia 87, 1–16.
- Chao, A., Chiu, C.H., Jost, L., 2010. Phylogenetic diversity measures based on Hill numbers. Philosophical Transactions of the Royal Society of London 365, 3599–609. doi:10.1098/rstb.2010.0272
- Cianciaruso, M.V., Silva, I.A., Batalha, M.A., 2009. Diversidades filogenética e funcional: Novas abordagens para a Ecologia de comunidades. Biota Neotropica 9, 0–11.
- Cincotta, R.P., Wisnewski, J., Engelman, R., 2000. Human population in the biodiversity hotspots. Nature 404 (6781), 990–991.
- Coca, M., Pausas, J., 2009. Regeneration traits are structuring phylogenetic diversity in cork oak (Quercus suber) woodlands. Journal of Vegetetion Science 20, 1009–1015.
- Ding, Y., Zang, R., Letcher, S.G., Liu, S., He, F., 2012. Disturbance regime changes the trait distribution, phylogenetic structure and community assembly of tropical rain forests. Oikos 121, 1263–1270. doi:10.1111/j.1600-0706.2011.19992.x
- Dinnage, R., 2009. Disturbance alters the phylogenetic composition and structure of plant communities in an old field system. PLoS One 4, e7071. doi:10.1371/journal.pone.0007071
- Duval, S., Tweedie, R., 2000. A nonparametric "Trim and Fill" method of accounting for publication bias in Meta-Analysis. Journal of The American Statistical Association 95, 89-98. doi.10.1080/01621459.2000.10473905.
- Fahrig, L., 2003. Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics 34, 487–515. doi:10.1146/annurev.ecolsys.34.011802.132419
- Fontúrbel, F.E., Candia, A.B., Malebrán, J., Salazar, D.A, González-Browne, C., Medel, R., 2015. Meta-analysis of anthropogenic habitat disturbance effects on animal-mediated seed dispersal. Global Change Biology 21, 3951–60. doi:10.1111/gcb.13025
- Forrestel, E.J., Donoghue, M.J., Smith, M.D., 2014. Convergent phylogenetic and functional responses to altered fire regimes in mesic savanna grasslands of North America and South Africa. New Phytologist 203 (3), 1000-1011. doi.org/10.1111/nph.12846
- García, D., Chacoff, N.P., 2007. Scale-dependent effects of habitat fragmentation on hawthorn pollination, frugivory, and seed predation. Conservation Biology 21, 400–11. doi:10.1111/j.1523-1739.2006.00593.x
- Gerstner, K., Dormann, C. F., Stein, A., Manceur, A. M., Seppelt, R., 2014. Effects of land use on plant diversity: A global meta-analysis. Journal of Aplied Ecology 51, 1690–1700. doi: 10.1111/1365-2664.12329
- Gonzalez, M., Roger, A., Courtois, E., Jabot, F., Norden, N., Paine, C.E.T., Baraloto, C., Thébaud, C., Chave, J., 2010. Shifts in species and phylogenetic diversity between sapling and tree communities indicate negative density dependence in a lowland rain forest. Journal of Ecology 98, 137–146. doi:10.1111/j.1365-2745.2009.01607.x
- Grass, I., Brandl, R., Botzat, A., Neuschulz, E.L., Farwig, N., 2015. Contrasting taxonomic and phylogenetic diversity responses to forest modifications: Comparisons of taxa and successive plant life stages in South African scarp forest. PLoS One 10, e0118722. doi:10.1371/journal.pone.0118722
- Haddad, N.M., Brudvig, L.A., Clobert, J., Davies, K.F., Gonzalez, A., Holt, R.D., Lovejoy, T.E., Sexton, J.O., Justin, M.P., Collins, C.D., Cook, W.M., Damschen, E.I., Ewers, R.M., Foster, B. L., Jenkins, C.N., King, A. J., Laurance, W.F., Levey, D.J., Margules, C.R., Melbourne, B.A., Nicholls, A.O., Orrock, J.L., Song, D., Townshend, J.R., 2015. Habitat fragmentation and its lasting impact on Earth's ecosystems. Aplied Ecology 1, e1500052. doi: 10.1126/sciadv.1500052
- Harvey, P.H., Pagel, M.D., 1991. The comparative method in evolutionary biology. Oxford, UK: Oxford University Press
- Hoekstra, J.M., Boucher, T.M., Ricketts, T.H., Roberts, C., 2004. Confronting a biome crisis: global disparities of habitat loss and protection. Ecology Letters 8, 23–29. doi:10.1111/j.1461-0248.2004.00686.x
- Kembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H., Ackerly, D.D., Blomberg, S.P. and Webb, C.O. 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463-1464.

- Knapp, S., Dinsmore, L., Fissore, C., Hobbie, S., Jakobsdottir, I., Kattge, J., King, J., McFadden, J., Cavender-Bares, J., 2012. Phylogenetic and functional characteristics of household yard floras and their changes along an urbanization gradient. Ecology 93, 83– 98.
- Knapp, S., Kühn, I., Schweiger, O., Klotz, S., 2008. Challenging urban species diversity: contrasting phylogenetic patterns across plant functional groups in Germany. Ecology Letters 11, 1054–64. doi:10.1111/j.1461-0248.2008.01217.x
- Lapiedra, O., Sol, D., Traveset, A., Vilà, M., 2015. Random processes and phylogenetic loss caused by plant invasions. Global Ecology and Biogeography 24, 774–785. doi:10.1111/geb.12310
- Larkin, D.J., Hipp, A.L., Kattge, J., Prescott, W., Tonietto, R.K., Jacobi, S.K., Bowles, M.L., 2015. Phylogenetic measures of plant communities show long-term change and impacts of fire management in tallgrass prairie remnants. Journal of Applied Ecolpgy 52, 1638– 1648. doi:10.1111/1365-2664.12516
- Laurance, W.F., Sayer, J., Cassman, K.G., 2014. Agricultural expansion and its impacts ontropical nature. Trends in Ecology & Evolution 29, 107–116.
- Letcher, S.G., 2010. Phylogenetic structure of angiosperm communities during tropical forest succession. Proceedings of the Royal Society B: Biological Sciences 277, 97–104. doi:10.1098/rspb.2009.0865
- Letcher, S.G., Chazdon, R.L., Andrade, A.C.S., Bongers, F., van Breugel, M., Finegan, B., Laurance, S.G., Mesquita, R.C.G., Martínez-Ramos, M., Williamson, G.B., 2012. Phylogenetic community structure during succession: Evidence from three Neotropical forest sites. Perspect. Perspectives in Plant Ecology, Evolution and Systematics 14, 79– 87. doi:10.1016/j.ppees.2011.09.005
- Liu, Y., 2015. Community assembly after long-term fragmentation: a case study of tropical rainforest in Xishuangbanna, south-west China. Plant Ecology & Diversity 9 (1), 1–8. doi:10.1080/17550874.2015.1063020
- Lôbo, D., Leão, T., Melo, F.P.L., Santos, A.M.M. & Tabarelli, M., 2011. Forest fragmentation drives Atlantic forest of northeastern Brazil to biotic homogenization. Diversity and Distributions 17, 287–296.
- Markl, J.S., Schleuning, M., Forget, P.M., Jordano, P., Lambert, J.E., Traveset, A., Wright, S.J., Böhning-Gaese, K., 2012. Meta-Analysis of the effects of human disturbance on deed dispersal by animals. Conservation Biology 26, 1072–1081. doi:10.1111/j.1523-1739.2012.01927.x
- Millennium Ecosystem Assessment, 2005. Ecosystems and Human Well-being: Synthesis. Island Press, Washington, DC.
- Mo, X.X., Shi, L.L., Zhang, Y.J., Zhu, H., Slik, J.W.F., 2013. Change in phylogenetic community structure during succession of traditionally managed tropical rainforest in southwest China. PLoS One 8, e71464. doi:10.1371/journal.pone.0071464

- Munguía-Rosas, M.A., Jurado-Dzib, S.G., Mezeta-Cob, C.R., Montiel, S., Rojas, A., Pech-Canché, J.M., 2014. Continuous forest has greater taxonomic, functional and phylogenetic plant diversity than an adjacent naturally fragmented forest. Journal of Tropical Ecology 30, 323–333. doi:10.1017/S0266467414000194
- Murcia, C., 1995. Edge effects in fragmented forests: implications for conservation. Tree 10, 58-62.
- Myers, N., Mittermeier, R., Mittermeier, C., Fonseca, G.A.B. da, Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853–858.
- Norden, N., Letcher, S., Boukili, V., Swenson, N., Chazdon, R., 2012. Demographic drivers of successional changes in phylogenetic structure across life-history stages in plant communities. Ecology 93, 70–82.
- Peralta, G., Frost, C.M., Didham, R.K., Varsani, A., Tylianakis, J.M., 2015. Phylogenetic diversity and co-evolutionary signals among trophic levels change across a habitat edge. Journal of Animal Ecology 84, 364–72.
- Pimm, S.L., Raven, P., 2000. Extinction by numbers. Nature 403, 843–845. doi:10.1038/35002708
- Purschke, O., Schmid, B.C., Sykes, M.T., Poschlod, P., Michalski, S.G., Durka, W., Kühn, I., Winter, M., Prentice, H.C., 2013. Contrasting changes in taxonomic, phylogenetic and functional diversity during a long-term succession: Insights into assembly processes. Journal of Ecology 101, 857–866. doi:10.1111/1365-2745.12098
- R Core Team, 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/>.
- Raven, P. H. (ed.), 1980. Research Priorities in Tropical Biology. Natl Acad. Sci. Press, Washington DC.
- Ribeiro, M.C., Metzger, J.P., Martensen, A.C., Ponzoni, F.J., Hirota, M.M., 2009. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation 142, 1141–1153. doi:10.1016/j.biocon.2009.02.021
- Ribeiro, E., Santos, B., Arroyo-Rodríguez, V., Tabarelli, M., Souza, L.G., Leal, .,2016. Phylogenetic impoverishment of plant communities following chronic human disturbances in the Brazilian Caatinga. Ecology 97 (6), 1583-1592. doi.10.1890/15-1122.1.
- Rosenberg, D., Adams, C., Gurevitch, J., 2000. Meta Win: Statistical Software for Meta-Analysis. Version 2.0. Sinauer, Sunderland, MA.
- Santo-Silva, E.E., Santos, B.A., Arroyo-rodríguez, V., Melo, F.P.L., Faria, D., Cazetta, E., Mariano-Neto, E., Hernández-Ruedas, M.A., Tabarelli, M., 2018. Phylogenetic dimension of tree communities reveals high conservation value of disturbed tropical rainforests. Diversity and Distribuitions 24, 776–790. doi:10.1111/ddi.12732
- Santos, B.A, Arroyo-Rodríguez, V., Moreno, C.E., Tabarelli, M., 2010. Edge-related loss of tree phylogenetic diversity in the severely fragmented Brazilian Atlantic forest. PLoS One 5, e12625. doi:10.1371/journal.pone.0012625

- Santos, B.A., Tabarelli, M., Melo, F.P.L., Camargo, J.L.C., Andrade, A., Laurance, S.G., Laurance, W.F., 2014. Phylogenetic impoverishment of Amazonian tree communities in an experimentally fragmented forest landscape. PLoS One 9, e113109. doi:10.1371/journal.pone.0113109
- Tabarelli, M., Silva, J. M.C., Gascon, C., 2004. Forest fragmentation, synergisms and the impoverishment of neotropical forests. Biodiversity and Conservation 13: 1419–1425. doi: 10.1023/B:BIOC.0000019398.36045.1b
- Tabarelli, M., Pinto, L.L.P., Silva, J., Hirota, M., Bedê, L., 2005. Challenges and opportunities for biodiversity conservation in the Brazilian Atlantic Forest. Conservation Biology 19, 695–700.
- Tabarelli, M., Peres, C.A., Melo, F.P.L., 2012. The "few winners and many losers" paradigm revisited : Emerging prospects for tropical forest biodiversity. Biological Conservation 155, 136–140.
- Toyama, H., Kajisa, T., Tagane, S., Mase, K., Chhang, P., Samreth, V., Ma, V., Sokh, H., Ichihashi, R., Onoda, Y., Mizoue, N., Yahara, T., 2015. Effects of logging and recruitment on community phylogenetic structure in 32 permanent forest plots of Kampong Thom, Cambodia. Philosophical Transactions of the Royal Society of London 370, 20140008. doi:10.1098/rstb.2014.0008
- Tucker, C.M., Cadotte, M.W., Carvalho, S.B., Davies, T.J., Ferrier, S., Fritz, S.A., Grenyer, R., Helmus, M.R., Lanna, S., Mooers, A.O., Pavoine, S., Purschke, O., Redding, D.W., Rosauer, D.F., Winter, M., Mazel, F., 2017. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biological Reviews 92, 698–715. doi:10.1111/brv.12252
- Venter, O., Sanderson, E.W., Magrach, A., Allan, J.R., Beher, J., Jones, K.R., Possingham, H.P., Laurance, W.F., Wood, P., Fekete, B.M., Levy, M.A., Watson, E.M.J., 2016. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nature Communications 7(12558). doi:10.1038/ncomms12558
- Verdú, M., Pausas, J.G., 2007. Fire drives phylogenetic clustering in Mediterranean Basin woody plant communities. Journal of Ecology 95, 1316–1323. doi:10.1111/j.1365-2745.2007.01300.x
- Verdú, M., Rey, P.J., Alcántara, J.M., Siles, G., Valiente-Banuet, A., 2009. Phylogenetic signatures of facilitation and competition in successional communities. Journal of Ecology 97, 1171–1180. doi:10.1111/j.1365-2745.2009.01565
- Vieira, M.C., Cianciaruso, M.V., Almeida-Neto, M., 2013. Plant-pollinator coextinctions and the loss of plant functional and phylogenetic diversity. PLoS One 8, e81242. doi:10.1371/journal.pone.0081242
- Viechtbauer, W., 2015. metafor: Meta-analysis package for R. R package version 1.9-8.
- Webb, C.O., 2000. Exploring the phylogenetic structure of ecological communities: An example for rain forest trees. The American Naturalist 156, 145–155. doi:10.1086/303378

- Webb, C.O., Ackerly, D.D., Kembel, S.W., 2008. Phylocom: Software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24, 2098–2100. doi:10.1093/bioinformatics/btn358
- Webb, C.O., Ackerly, D.D., McPeek, M.A., Donoghue, M.J., 2002. Phylogenies and Community Ecology. Annual Review of Ecology, Evolution, and Systematics 33, 475– 505. doi:10.1146/annurev.ecolsys.33.010802.150448
- Webb, C.O., Donoghue, M.J., 2005. Phylomatic: tree assembly for applied phylogenetics. Molecular Ecology Notes 5, 181–183. doi:10.1111/j.1471-8286.2004.00829.x
- Williams, P.H., Humphries, C.J., Vane-wright, R.I. 1991. Measuring biodiversity: taxonomic relatedness for conservation priorities. Australian Systematic Botanic 4(4):665-679.
- Whitfeld, T.J.S., Kress, W.J., Erickson, D.L., Weiblen, G.D., 2012. Change in community phylogenetic structure during tropical forest succession: evidence from New Guinea. Ecography (Cop.) 35, 821–830. doi:10.1111/j.1600-0587.2011.07181.x
- Zhang, J., Mayor, S.J., He, F., 2014. Does disturbance regime change community assembly of angiosperm plant communities in the boreal forest? Journal of Plant Ecology 7, 188–201. doi:10.1093/jpe/rtt068

<u>Capítulo 2</u>

Forest loss and the phylogenetic impoverishment of tree assemblages in the Brazilian Atlantic forest

FOREST LOSS AND THE PHYLOGENETIC IMPOVERISHMENT OF TREE ASSEMBLAGES IN THE BRAZILIAN ATLANTIC FOREST

Andrade, E.R.¹; Arroyo-Rodríguez, V.²; Santos, B.A.³; Carvalho, G.H.¹, Mariano-Neto, E.⁴; Rocha-Santos, L.¹; Pessoa, M.¹; Gomes, F.S.⁴; Faria, D.¹; Cazetta, E.¹

1. PPG Ecologia e Conservação da Biodiversidade, Laboratório de Ecologia Aplicada à Conservação, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado km 16, 45662-900, Ilhéus, Bahia, Brazil

2. Instituto de Investigaciones en Ecosistemas y sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, Mexico

3. Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Cidade Universitária, 58051-900, João Pessoa, Paraíba, Brazil

4. Instituto de Biologia, Universidade Federal da Bahia, R. Barão Jeremoabo, Ondina, 40170-115 Salvador, Bahia, Brazil

This manuscript will be submitted to Ecology.

ABSTRACT

Tropical forest loss may show variable effects on biodiversity, depending on the taxonomic group and on the patterns and history of land-use change. In fact, both linear and non-linear (i.e. extinction thresholds) associations between forest cover and species diversity have been documented, but it is unclear if such taxonomic changes modify the phylogenetic diversity and structure of the remaining assemblages. Also, evaluating these effects on different ontogenetic stages is of upmost importance because it can show consequences for future communities. To address this issue we assessed whether and how (i.e. linear vs. nonlinear) forest loss affects the mean effective number of lineages [$^{q}D(T)$], mean phylogenetic distance (MPD), and

phylogenetic dispersion (NRI) of plant assemblages in the fragmented Brazilian Atlantic forest. We studied 20 landscapes (5-99% of forest cover) from two regions with contrasting patterns of land-use change, independently considering juveniles (individuals with woody stem, heights ≥ 1.3 m, and DBH ≤ 5 cm) and adult trees (DBH ≥ 5 cm) to assess potential extinction debts. Our analyses revealed that all phylogenetic responses to forest loss were linear or null. ^qD(T)_{adults} was positively related to forest cover only for phylogenetic richness (q=0). ^qD(T)_{juveniles} was also linear and positively related to forest cover (in all values of q), but such effect differed between regions, except for the lineages of dominant species (q=2). The most deforested region showed lower values of phylogenetic richness and divergence (q=1) diversity to the same percentage of forest cover on the most forested region. Forest cover was not associated with MPD_{adults}, but it was positively related to MPD_{juveniles}. Forest cover loss did not affect NRI_{adults} and NRI_{juveniles}. The stronger phylogenetic effect on juveniles might suggest the existence of extinction debts. Thus, without preventing (and reverting) deforestation in this species-rich tropical region, the phylogenetic diversity of future tree assemblages will decrease, potentially limiting the ability of forest responses to additional land-use changes.

Key-words: Ontogenetic stages, Extinction debt, Alpha phylogenetic diversity, Forest cover

INTRODUCTION

Habitat loss is a major driver of the current rates of species extinction, considered the main global threat to biodiversity. Previous studies have consistently shown the negative effects of habitat loss on species richness in general (Fahrig 2003). In this context, Fahrig (2013) proposed the 'habitat amount hypothesis', with a simpler view of the relationship between habitat distribution and species richness. This hypothesis predicts that species richness should increase with total habitat amount in the landscape. However, in addition to the sample area effect, there is increasing evidence that the surrounding matrix can also influence species

richness in the habitat (Fahrig 2013). More than that, the response of biodiversity to habitat disturbance can vary among landscapes and regions, depending on landscape heterogeneity (Arroyo-Rodríguez et al. 2008).

The relationship between habitat loss and species richness is not always linear. Theoretical and empirical evidence of non-linear (i.e. extinction thresholds) biodiversity responses to habitat loss were observed, in which a more pronounced diversity loss is expected when small and isolated patches dominate the landscape (Andrén 1994). This pattern was also found for some plant families, such as Sapotaceae (Lima and Mariano-Neto 2014) and Myrtaceae (Rigueira et al. 2013). Moreover, habitat modification can also affect plant assemblages differently, depending on their ontogenetic stage. Adult individuals tend to remain in the community for a longer time after disturbance (Metzger et al. 2009, Rigueira et al. 2013), and some studies point out that slow-growing plants might remain for more than a century (Vellend et al. 2006). However, forest loss causes rapidly changes on plant reproductive success (Fontúrbel et al. 2015) and the early ontogenetic stages can be more susceptible to disturbance effects. Therefore, the effects of environmental perturbations can be immediate in some cases, but often population declines might occur with a substantial delay following disturbance (Kuussaari et al. 2009, Jackson and Sax 2010), in a process known as extinction debt.

To enhance our understanding on the effects of habitat loss on biodiversity is crucial, especially on signals of potential extinction debts. Although landscape-scale forest loss is considered a key driver of species extinction, its impacts on phylogenetic diversity of tree assemblage are still poorly understood. The results so far show divergent results. For instance, one study found that phylogenetic diversity was maintained even in a highly fragmented tropical forest landscape (Arroyo-Rodriguez et al. 2012). In the same forest type, one investigation found a reduction of phylogenetic diversity on forest edges, but without effect of fragment size (Santos et al. 2010). Other studies have found negative effects of anthropogenic disturbances on phylogenetic relationships, either by reducing diversity or by altering the

structure by increasing phylogenetic clustering (Knapp et al. 2008, Letcher et al. 2012, Ding et al. 2012, Andrade et al. 2015). On the other hand, some studies found an increase in diversity or a more evenness phylogenetic structure in disturbed or post-disturbance areas, largely due to the incorporation of non-native species (Peralta et al. 2015, Liu 2015).

Phylogenetic information is important to understand the mechanisms that determine species coexistence in plant assemblages (Gonzalez et al. 2010, Santos et al. 2010), as well as to verify the influence of habitat alterations on phylogenetic relationships of species (Santos et al. 2010). Also in face of the current habitat changes, high phylogenetic diversity may ensure high evolutionary potential to adapt to global changes (Winter et al. 2013). Moreover, it is very unclear the extinction debt in terms of phylogenetic diversity (Grass et al. 2015).

Here we analyzed the effects of forest loss on phylogenetic richness, divergence, and structure of tree assemblage in the fragmented Brazilian Atlantic forest. We assessed adult tree and juvenile community in 20 landscapes covering a wide variation of habitat amount (a range of 5-99% of forest cover). Assuming that forest loss might affect phylogenetic dimensions of plants directly, with thresholds and /or depending on the land use history of the area, we tested whether and how (i.e. linear vs. nonlinear vs. variable effects among regions) forest loss affects the phylogenetic richness and divergence through the mean effective number of lineages [^qD(T)], mean phylogenetic distance (MPD), and phylogenetic dispersion/clustering (NRI) of plant assemblages in the fragmented Brazilian Atlantic forest.

Considering the evolutionary relationship between species, and the controversial results found so far, we expected that the following process might operate and contribute differently to the responses of phylogenetic dimensions to forest cover loss (Santos et al. 2010, Arroyo-Rodríguez et al. 2012, Grass et al. 2015). We can expected two alternative scenarios: first, phylogenetic responses might be weak or not related to forest loss whether: a.) species loss belongs to clades that still maintains some representative even in low forest coverage; or b.) species loss is randomly or uniformly across phylogeny. Second, phylogenetic metrics will be negatively affected by forest loss if species loss occurred on entire clades of species. In addition, if the balance between extirpation and proliferation of particular lineages results in the cooccurrence of more related taxa, it will also contribute to the increase in community phylogenetic clustering and phylogenetic diversity loss. However, due to potential extinction debts we also expect stronger effects on juvenile assemblage, as this ontogenetic stage are often more vulnerable.

METHODS

Study area

We conducted the study in two regions in southern Bahia, northeastern Brazil (Fig. 1): Una and Belmonte (15°28'S, 39°15'W). Both regions lie within the Brazilian Atlantic Forest Domain. They are also under similar climate, hot and humid, with annual temperature averaging 24°C and annual rainfall of about 1300 mm, without a marked seasonality (Mori et al. 1983). The dominant vegetation is tropical lowland wet forest and all remaining forest fragments have similar soil and topographic characteristics (Thomas et al. 1998).

Fig. 1. Map of the study area in southern Bahia, Brazil.

Atlantic Forest remnants (gray areas) and the 20 sampling sites (black points). Dashed lines show the two areas that were mapped for this study. A: Una region, heterogeneous landscape that comprised of a mosaic of different land cover types, including old-growth and secondary forests, rubber and shade cocoa plantations. This region have larger blocks of forest, included one biological Reserve (REBIO-Una). B: Belmonte region, landscape with more deforestation and the matrix is mainly composed of open areas of cattle pastures and patches of Eucalyptus plantations. Images of areas that are outside of the dashed lines were obtained from forest cover map "Atlas dos Remanescentes Florestais da Mata Atlântica" of open access (SOS Mata Atlântica 2012).

In Una (Fig. 1A), varying land-uses have led to a heterogeneous landscape, including a mixture of old-growth and secondary forests, rubber, and shade cocoa plantations (Faria et al. 2006). For example, in 1980 a Federal Protected Area was established in Una – the Una Biological Reserve (Rebio UNA). After incorporation of some additional forest remnants by 2007, Rebio UNA reached 18,500 ha of protected area, becoming one of the largest Atlantic forest blocks in southern Bahia (Schroth et al. 2011). The Belmonte region (Fig. 1B), however, suffered an extensive and accelerated deforestation during the 90s, principally for the expansion of cattle pastures and *Eucalyptus* plantations (Nascimento et al. 2009).

Study sites and explanatory variables

We mapped the study areas through the analysis of satellite images (QuickBird and WorldView, from 2011; and RapidEye, from 2009-2010). We created digital maps using GIS software by manually digitizing the land cover features visually interpreted at scale of 1:10,000, which is adequate for identifying patches based on the visual inspection of differences in color, texture, shape, location, and context. We delimited patches as polygons, following the typologies provided by IBGE (2006). After intensive ground-truthing, we developed a map of

the land use of a 3,470 km² area showing the composition and spatial arrangement of all landcover types in both regions. Only old-growth and secondary forest patches at different successional stages were considered in our estimations of landscape forest cover (Fig. 1). Afterward, we identified 58 potential sites and calculated the forest cover percentage within a 600-m radius from the center of each site. We did this to avoid spatial overlap between landscapes, which is required to make accurate landscape-sale inferences (Eigenbrod et al. 2011). We grouped sites into forest cover classes and performed a stratified random sampling of 20 sites covering a wide variation of habitat left (a range of 5-99% of forest cover – Appendix S1).

Data surveys

In each study site, we established 5 plots randomly distributed at a minimum distance of 50 m from each other, whilst avoiding the forest edge (50 m). Adults (stems with Diameter at breast height (DBH) \geq 5 cm) were sampled in 25 x 4-m plots from February 2013 to July 2014. Juveniles (individuals with woody stem, heights \geq 1.3 m, and DBH \leq 5 cm) were sampled in 25 x 2-m plots from March to June 2013. We considered in the analysis only juveniles of the species with tree habit. All individuals were collected and identified to the lowest taxonomic level possible with the aid of specific literature, expert knowledge of the local flora (see Amorim et al. 2008, Faria et al. 2009, Pardini et al. 2009), and comparisons with vouchers deposited in the following herbaria: Herbarium André Maurício V. de Carvalho, Centro de Pesquisas do Cacau (CEPEC / CEPLAC), Herbarium Universidade Estadual de Santa Cruz (HUESC), and Alexandre Leal Costa (ALCB) Herbarium.

Response variables

We constructed two phylogenetic trees with Phylomatic (Webb and Donoghue 2005): one for the 547 adult tree species and another for the 609 juveniles species. Both trees are based on the supertree version R20120829 for plants made available with Phylomatic and contained all taxa found. We used the BLADJ function of Phylocom 4.1(Webb et al. 2008) to adjust branch lengths based in ages estimated by Bell et al. (2010). After constructing the time-calibrated phylogeny (Appendix S2 and S3), we calculated the metrics of phylogenetic richness, divergence and structure.

We used a phylogenetic generalization of Hill numbers (Chao et al. 2010) to estimate mean effective number of lineages [${}^{q}D(T)$]. This measure was derived to take into account both species abundances and species phylogenetic differences (Chao et al. 2010). The result is the mean effective number of species (or of maximally distinct lineages) from *T* time units ago to the present (Chao et al. 2010) and obeys the replication principle (Jost 2007). The ${}^{q}D(T)$ can be calculated as:

$${}^{q}\overline{D}(\overline{T}) = \left\{ \sum_{i \in B_{T}} \frac{Li}{T} a_{i}^{q} \right\}^{1/(1-q)}$$

Where *Li* is the length (duration) of branch *i* in the set B_T and a_i is the total abundance descended from branch *i* (see Chao et al. 2010 for details). We considered three orders of q, which determine the sensitivity of this metric to species' abundances (Chao et al. 2010): q = 0 (based on species richness), q = 1 (based on the number of "common" species) and q = 2 (based on the number of "dominant" species). When q=0, this metric is considered a measure of phylogenetic richness and all others orders of q are considered metrics of phylogenetic divergence (see Tucker et al. 2016).

Because different phylogenetic indices can lead to different (and even contradicting) results (e.g., Roeder et al. 2015), we used additional metrics to achieve more accurate and confident interpretations (Winter et al. 2013, Roeder et al. 2015). In particular, we used the COMSTRUCT function of Phylocom 4.1 to calculate two phylogenetic metrics: mean phylogenetic distance (MPD) and net related index (NRI). MPD measures the average

phylogenetic distance among pairs of individuals drawn at random from a sample, whereas NRI calculates the effect size of MPD relative to a null model, indicating whether taxa in a sample are more phylogenetically clustered (positive NRI) or dispersed (negative NRI) than expected at random (Webb et al. 2002, Vamosi et al. 2009). MPD is reported here in millions of years and is considered a measure of phylogenetic divergence (see Tucker et al. 2017). NRI is expressed in units of standard deviation and is a metric of phylogenetic structure (also see Arroyo-Rodríguez et al. 2012, Santos et al. 2014).

Data analyses

To assess the influence of forest cover loss on each phylogenetic metric, we tested four different models for each ontogenetic class: (i) a linear model considering only the effect of landscape forest cover; (ii) an ANCOVA model including landscape forest cover, the region, and the interaction between them to test for differences among regions in the effect of landscape forest cover; (iii) a piecewise model to evaluate non-linear phylogenetic responses to landscape forest loss; and (iv) a null model (including only the intercept). The piecewise model allows the identification of threshold values of landscape forest cover (i.e., the "breakpoint") below and above which the relationship between landscape forest cover and phylogenetic metrics shifts abruptly. For each model, we calculated the goodness of fit (R^{2}_{adi}), p, AICc (i.e. Akaike information criterion corrected for small samples), and $\Delta AICc$ (difference between the best model, i.e., the model with lowest AICc value, and the model *i*). We also assessed the predictive accuracy of each model by estimating the mean square prediction error with leave-one-out cross-validation, which uses a single observation from the original dataset as the test (or validation) data, and the remaining observations as the training data. This is repeated such that each observation in the sample is used once as the validation data, and then it is possible to judge the goodness of the prediction of each model by estimating its average square prediction error. When the ΔAIC is lower than 1, we consider equally plausible models and if the null

model is between these, we consider the null the best model. We performed all models with R (R Core Team 2014), using the *DAAG* package for cross-validation analyses (Maindonald and Braun 2015), and the *bbmle* package for calculating AICc values (Bolker 2017).

RESULTS

We sampled a total of 1,951 adult individuals belonging to 547 species and 3935 juveniles belonging to 609 species. In general, the mean phylogenetic distance (MPD) was very similar between the ontogenetic classes. MPD averaged 239.0 \pm 8.6 million years in juvenile assemblages and 248.3 \pm 8.5 million years in adult assemblages. Considering the metric of structure (NRI), the average was greater for juveniles (0.09 \pm 0.7) than for adults (-0.65 \pm 1.1), so the juveniles assemblages are more clustered than the adult assemblages, in general. The mean effective number of distinct lineages, regardless if it is based on species richness, common or dominant species, was also similar between the ontogenetic stages. When we considered species richness [⁰D(T)], the average was 28.1 \pm 8.9 lineages for juveniles and 26.2 \pm 4.5 lineages for adults, and when considered the common species [¹D(T)] the average was 10.8 \pm 2.5 and 12.1 \pm 2.0 lineages for juveniles and adults, respectively. To the phylogenetic divergence based on dominant species [²D(T)], the average was 4.3 \pm 0.5 for juveniles and 5.0 \pm 0.6 for adults (Table 1).

	JUVENILES		ADULTS	
PHYLOGENETIC	$Mean \pm SD$	Min – Max	$Mean \pm SD$	Min - Max
METRIC				
MPD	239.0 ± 8.6	221.9 - 251.4	248.3 ± 8.5	229.3 - 257.8
NRI	0.09 ± 0.7	-1.09 - 1.25	-0.65 ± 1.1	-2.07 - 1.24
⁰ D (T)	28.13 ± 9.0	13.34 - 45.27	26.18 ± 4.5	18.96 - 36.68
¹ D (T)	10.78 ± 2.5	7.14 - 15.33	12.14 ± 2.0	8.38 - 16.63
² D (T)	4.33 ± 0.5	3.46 - 5.15	4.97 ± 0.6	3.77 – 5.75

Table 1. Values of plant phylogenetic metrics in each ontogenetic class (adult and juveniles)sampled in 20 sites from the Atlantic forest, Bahia, Brazil.

Forest cover did not affect the mean phylogenetic divergence [qD(T)] in adults for q = 1 and q = 2, as the null model was among the most plausible models for these variables (Table 2). However, it did affect the phylogenetic richness (q = 0), which was best explained by the linear model (Table 2). Forest cover reduction affected mean effective number of lineages based on species richness, common and dominant species in juvenile assemblage communities (Fig. 2). The landscape-scale forest loss influenced linearly the phylogenetic richness (q=0) (Table 2). However, for q = 1 (common) and q = 2 (dominant) the relationship was affected by region (ANCOVA models selected). The more deforested region presented lower values of mean effective number of lineages of dominant and common lineages regardless of the forest cover amount.

Response	AICc	Δ AICc	r ²	P	MSE
Variable/Model					
MPD					
JUVENILES					
Linear	143	0.0	0.210	0.024	63.0*
Ancova	146	2.7	0.277	0.042	60.4
Null	146	3.0	-	-	77.2
Piecewise	149	5.7	0.160	0.872	61.5
ADULTS					
Null	146	0.0	-	-	76.6*
Ancova	148	2.3	0.177	0.110	87.7
Linear	149	2.7	-0.051	0.772	85.7
Piecewise	154	7.8	-0.085	0.822	97.4
NRI					
JUVENILES					
Null	43.9	0.0	-	-	0.5*
Linear	46.4	2.5	-0.043	0.642	0.5
Ancova	48.8	4.9	0.059	0.279	0.5
Piecewise	51.4	7.6	-0.073	0.723	0.4
ADULTS					

Table 2. Models used for explaining the relationship between phylogenetic metrics in adult and juveniles plants in function of the amount of forest cover in landscape-scale (AICc – Akaike information criterion corrected; MSE – Mean square error).

Null	64.8	0.0	-	-	1.2*
Ancova	66.2	2.3	0.173	0.114	1.4
Linear	66.4	2.6	-0.043	0.646	1.4
Piecewise	69.4	5.5	0.030	0.335	1.3
⁰D(T)					
JUVENILES					
Ancova	116	0.0	0 854	1 67e-07	16 9*
Linear	125	9.6	0.706	2.18e-06	26.3
Piecewise	127	11.2	0.743	0.267	26.6
Null	148	32.3	-	-	84 3
ADULTS	110	32.3			01.5
Linear	113	0.0	0.366	0.002	13.5*
Ancova	116	2.8	0.417	0.008	15.4
Piecewise	118	5.0	0.348	0.854	15.9
Null	120	7.4	-	-	21.2
$^{1}D(T)$					
JUVENILES					
Ancova	78.4	0.0	0.699	4.95e-05	2.33*
Linear	80.2	1.8	0.590	4.63e-05	2.73
Piecewise	85.2	6.8	0.577	0.837	3.01
Null	96.3	17.9	_	_	6.32
ADULTS					
Linear	87.7	0.0	0.085	0.114	3.87
Null	87.8	0.1	-	-	4.13*
Ancova	87.9	0.2	0.260	0.051	3.88
Piecewise	93.0	5.3	0.045	0.734	4.51
$^{2}\mathbf{D}(\mathbf{T})$					
JUVENILES					
Linear	29.1	0.0	0.201	0.027	0.21*
Ancova	31.4	2.4	0.280	0.041	0.20
Null	31.9	2.8	-	-	0.25
Piecewise	34.7	5.6	0.153	0.845	0.25
ADULTS					
Null	39.6	0.0	-	-	0.37*
Ancova	41.7	2.1	0.185	0.102	0.42
Linear	42.3	2.7	-0.051	0.779	0.41
Piecewise	47.1	7.5	-0.069	0.744	0.47

Notes: The red color indicates that one of the trend lines separated by the breakpoint has only two points, so were excluded from the selection of models, regardless of the values of AIC and MSE.*best model or one of the most plausibles.

Fig. 2. Phylogenetic diversity (MPD- mean phylogenetic distance) and structure phylogenetic (NRI – net related index) metrics to juveniles and adults of plants along the forest cover gradient in south Bahia, Brazil. We plotted the most plausible model.

The phylogenetic divergence (MPD) of juveniles was negatively related to landscapescale forest loss. The phylogenetic structure (NRI) was not related for juveniles and adults (Fig. 3). The linear model best explained the relationship between MPD juvenile and forest cover, and for adults, the null model was the most plausible for this metric (Table 2). The null model best explained the relationship between forest cover and the NRI metric independent of the ontogenetic stage (Table 2).

Fig. 3. Relationship between the forest cover gradient and the mean phylogenetic diversity $[^{q}D(T)]$ based oh Hill numbers, evaluated on the three orders of q (0, 1 and 2) to juveniles and adults of plants. The red points indicate the more deforested region (Belmonte) and the black points indicate the less deforested region (Una). We plotted the most plausible model.

Considering the adult assemblage, 15 out of 20 forest remnants (75%) showed a structure with a tendency to phylogenetic overdispersion (negative values of NRI) regardless the forest cover amount. To the juvenile assemblage, this was found for 9 of the 20 forest

remnants (45% with negative values). So, more forest remnants were clustered (positive values) on juveniles than on adult assemblages.

DISCUSSION

Our results highlight the strong effects of forest loss on the phylogenetic richness and divergence reduction in juvenile assemblages. Phylogenetic impoverishment limits the ecosystem's ability to respond to human disturbances (Willis et al. 2008), although the adult assemblage is still able to maintain part of the phylogenetic diversity, the next generations will no longer have the same capacity. According to Tilman et al. (1994), even habitat destruction is predicted to produce time-delayed extinction in forest remnants. In this way, the future of the forest might be compromised, and a low ecological resilience is expected.

The metrics based on Hill numbers (see Chao et al. 2010) showed that only phylogenetic richness (q = 0) responded to forest cover reduction in adult assemblages, possibly because this metric is intrinsically more influenced by species richness than the other two dimensions (Tucker et al. 2017). It is interesting to note, that forest cover reduction strongly affected tree and juvenille richness in the same landscapes (Benchimol et al. 2017). The phylogenetic divergence of common and dominant lineages based on Hill numbers (q=1 and q=2) were not affected. So, this indicated that only the phylogenetic diversity of rare adults species is affected by forest reduction. Rare species are more vulnerable to local disappearance in forest patches (Fischer and Lindenmayer 2007) and also can have significantly higher phylogenetic diversity than expected by chance (Mi et al. 2012).

On the contrary, when juveniles were evaluated, forest cover negatively affect all orders of q. Our results showed linear loss of phylogenetic divergence of dominant species. We also detected effects of the region on phylogenetic richness (q0) and divergence of dominant juvenile species (q2). The more deforested region showed lower values of these metrics in all values of the forest cover than the more forested region. The more deforested region also have a less permeable matrix, with pastures and *Eucalyptus* plantations (Nascimento et al. 2009). So, this might cause dispersal and resource limitation, which in turn might affect plant recruitment. This reinforces the time-delayed responses of juvenile assemblages to habitat modification (Tilman et al. 1994).

The phylogenetic divergence – MPD - was linearly affected by forest loss, in the juvenile but not in adult assemblages. Several other studies also did not find a decrease in phylogenetic metrics in adult tree assemblages (Arroyo-Rodríguez et al. 2012, Santos et al. 2010), including a recent study evaluating 98 tropical landscapes (Santo-Silva et al. 2018). However, all these previous studies focused on adult plants and found similar responses as showed here. Few studies evaluated other ontogenetic classes, but a similar result was found by Grass et al. (2015), in which a stronger effect of forest disturbance on early ontogenetic stages was reported.

The phylogenetic structure of adults and juveniles, measured by the NRI, was not affected by forest loss, indicating that there is no evidence of phylogenetic clustering or evenness induced by forest reduction. The same pattern was found for a tree community in a fragmented landscape on northeastern Brazil (Santos et al. 2010). As previously showed, species richness is affected by forest loss in our study landscapes (Benchimol et al. 2017), and this is not resulting in phylogenetic clustering. Thus, our results suggest that local species loss occurs uniformly or randomly throughout the phylogenetic tree (Arroyo-Rodriguez et al. 2012, Santos et al. 2010). In addition, it is possible some species loss within clades without the complete extirpation of those clades. Another possibility, that different species have been added in deforested landscapes, maintaining community phylogenetic dispersion regardless of forest loss. Thus, the species loss was not accompanied by a change in the phylogenetic structure, and the remaining species are not more or less clustered than they would be by chance.

Our results showed that all phylogenetic responses to forest loss, when present, were linear. We did not detect evidence of extinction thresholds like other studies evaluating plant taxonomic composition (Lima and Mariano-Neto 2014, Rigueira et al. 2013). We showed a reduction in phylogenetic divergence and richness with decreasing forest in the landscape, but mainly for the juvenile assemblages. The amount of forest cover at the landscape-scale is a good proxy for found responses of diversity (Fahrig 2013) and we stress the importance of considering this variable. We also found support for the influence of the matrix on the phylogenetic dimension of juveniles. The reduction of matrix quality clearly reduces species richness (Prevedello and Vieira 2009, Fahrig 2013), also bird phylogenetic diversity (Boesing et al. 2018), and now, our results show influence on phylogenetic richness and divergence of plants with a possible time delayed.

In conclusion, our study has provided evidence of the drastic effects of forest loss on plant phylogenetic diversity. We highlight that phylogenetic loss was sharp in the most deforested region, probably due to the harsh matrix conditions. More important, we showed strongly effects on juvenile assemblages, which might indicate a phylogenetic extinction debt. So, we need to prioritize the conservation in more forested landscapes to conserve the phylogenetic diversity of the future plant assemblages. Otherwise, without preventing (and reverting) deforestation in this species-rich tropical region, the phylogenetic richness and divergence of future tree assemblages will be increasingly poorer, potentially limiting the ability of this forest to respond to additional land-use changes.

REFERENCES

- Amorim, A. M., W. W. Thomas, A. M. V. Carvalho, and J.G. Jardim. 2008. Floristic of the Una Biological Reserve, Bahia, Brazil. *In* The Atlantic Coastal Forests of Northeastern Brazil (W.W. Thomas, ed.). Memoirs of the New York Botanical Garden 100:67-146.
- Andrade, E. R., J. G. Jardim, B. A. Santos, F. P. L. Melo, D. C. Talora, D. Faria, and E. Cazetta. 2015. Effects of habitat loss on taxonomic and phylogenetic diversity of understory Rubiaceae in Atlantic forest landscapes. Forest Ecology and Management 349:73–84.
- Andrén, H. 1994. Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat : a review. Oikos 71:355–366.
- Arroyo-Rodríguez, V., J. Cavender-Bares, F. Escobar, F. P. L. Melo, M. Tabarelli, and B. A. Santos. 2012. Maintenance of tree phylogenetic diversity in a highly fragmented rain forest. Journal of Ecology 100:702–711.
- Arroyo-Rodríguez, V., E. Pineda, F. Escobar, and J. Benítez-Malvido. 2008. Value of Small Patches in the Conservation of Plant-Species Diversity in Highly Fragmented Rainforest. Conservation biology 23:729–739.
- Bell, C. D., D. E. Soltis, and P. S. Soltis. 2010. The age and diversification of the angiosperms re-revisited. American journal of botany 97:1296–303.
- Benchimol, M., E. Mariano-Neto, D. Faria, L. Rocha-Santos, M. S. Pessoa, F. S. Gomes, D. C. Talora, and E. Cazetta. 2017. Translating plant community responses to habitat loss into conservation practices: Forest cover matters. Biological Conservation 209:499–507.
- Boesing, A. L., E. Nichols, and J. P. Metzger. 2018. Biodiversity extinction thresholds are modulated by matrix type. Ecography 41:1–14.
- Bolker, B. M. 2017. *bbmle*: Tools for general maximum likelihood estimation. R package version 1.0.20. Available: https://cran.r-project.org/web/packages/bbmle/bbmle.pdf
- Chao, A., C. H. Chiu, and L. Jost. 2010. Phylogenetic diversity measures based on Hill numbers. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 365:3599–609.
- Ding, Y., R. Zang, S. G. Letcher, S. Liu, and F. He. 2012. Disturbance regime changes the trait distribution, phylogenetic structure and community assembly of tropical rain forests. Oikos 121:1263–1270.
- Eigenbrod, F., S. J. Hecnar, and L. Fahrig. 2011. Sub-optimal study design has major impacts on landscape-scale inference. Biological Conservation 144:298–305.
- Fahrig, L. 2003. Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics 34:487–515.
- Fahrig, L. 2013. Rethinking patch size and isolation effects: the habitat amount hypothesis. Journal of Biogeography 40:1–15.
- Faria, D., R. R. Laps, J. Baumgarten, and M. Cetra. 2006. Bat and bird assemblages from forests and shade cacao plantations in two contrasting landscapes in the Atlantic Forest of Southern Bahia, Brazil. Biodiversity and Conservation 15:587–612.
- Faria, D., E. Mariano-Neto, A. M. Z. A. Martini, J. V. Ortiz, R. Montingelli, S. Rosso, M. L. B. Paciencia, and J. Baumgarten. 2009. Forest structure in a mosaic of rainforest sites: The effect of fragmentation and recovery after clear cut. Forest Ecology and Management 257:2226–2234.
- Fischer, J., and D. B. Lindenmayer. 2007. Landscape modification and habitat fragmentation: A synthesis. Global Ecology and Biogeography 16:265–280.

- Fontúrbel, F. E., A. B. Candia, J. Malebrán, D. a Salazar, C. González-Browne, and R. Medel. 2015. Meta-analysis of anthropogenic habitat disturbance effects on animal-mediated seed dispersal. Global change biology 21:3951–60.
- Gonzalez, M., A. Roger, E. Courtois, F. Jabot, N. Norden, C. E. T. Paine, C. Baraloto, C. Thébaud, and J. Chave. 2010. Shifts in species and phylogenetic diversity between sapling and tree communities indicate negative density dependence in a lowland rain forest. Journal of Ecology 98:137–146.
- Grass, I., R. Brandl, A. Botzat, E. L. Neuschulz, and N. Farwig. 2015. Contrasting taxonomic and phylogenetic diversity responses to forest modifications: comparisons of taxa and successive plant life stages in South African scarp forest. PloS one 10:e0118722.
- IBGE, Instituto Brasileiro de Geografia e Estatística. 2006. Manual Técnico de Uso da Terra. Diretoria de Geociências, Coordenação de Recursos Naturais e Estudos Ambientais, Rio de Janeiro.
- Jackson, S. T., and D. F. Sax. 2010. Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends in ecology & evolution 25:153–60.
- Jost, L. 2007. Partitioning diversity into independent alpha and beta components. Ecology 88:2427–2439.
- Knapp, S., I. Kühn, O. Schweiger, and S. Klotz. 2008. Challenging urban species diversity: contrasting phylogenetic patterns across plant functional groups in Germany. Ecology letters 11:1054–64.
- Kuussaari, M., R. Bommarco, R. K. Heikkinen, A. Helm, J. Krauss, R. Lindborg, E. Ockinger, M. Pärtel, J. Pino, F. Rodà, C. Stefanescu, T. Teder, M. Zobel, and I. Steffan-Dewenter. 2009. Extinction debt: a challenge for biodiversity conservation. Trends in ecology & evolution 24:564–71.
- Letcher, S. G., R. L. Chazdon, A. C. S. Andrade, F. Bongers, M. van Breugel, B. Finegan, S. G. Laurance, R. C. G. Mesquita, M. Martínez-Ramos, and G. B. Williamson. 2012. Phylogenetic community structure during succession: Evidence from three Neotropical forest sites. Perspectives in Plant Ecology, Evolution and Systematics 14:79–87.
- Lima, M. M., and E. Mariano-Neto. 2014. Extinction thresholds for Sapotaceae due to forest cover in Atlantic Forest landscapes. Forest Ecology and Management 312:260–270.
- Liu, Y. 2015. Community assembly after long-term fragmentation: a case study of tropical rainforest in Xishuangbanna, south-west China. Plant Ecology & Diversity:1–8.
- Maindonald, J.H., and W.J. Braun. 2015. *DAAG*: Data Analysis and Graphics Data and Functions. R package version 1.22. Available: https://cran.r-project.org/web/packages/DAAG/DAAG.pdf
- Metzger, J. P., A. C. Martensen, M. Dixo, L. C. Bernacci, M. C. Ribeiro, A. M. G. Teixeira, and R. Pardini. 2009. Time-lag in biological responses to landscape changes in a highly dynamic Atlantic forest region. Biological Conservation 142:1166–1177.
- Mi, X., N. G. Swenson, R. Valencia, W. J. Kress, D. L. Erickson, J. Pe, H. Ren, S. Su, N. Gunatilleke, S. Gunatilleke, Z. Hao, W. Ye, M. Cao, H. S. Suresh, H. S. Dattaraja, R. Sukumar, and K. Ma. 2012. The Contribution of Rare Species to Community Phylogenetic Diversity across a Global Network of Forest Plots. The American naturalist 180:17–30.
- Mori, S., B. Boom, A. Carvalho, and T. Santos. 1983. Southern Bahian moist forests. The Botanical Review 49:155–232.
- Nascimento, D. M. C., M. J. L. Dominguez, and S. B. de M. Silva. 2009. Mudanças na ocupação econômica do litoral sul da Bahia: Os exemplos de Belmonte e Canavieiras, Bahia. Revista

Desenbahia n 10:7–28.

- Pardini, R., D. Faria, G. M. Accacio, R. R. Laps, E. Mariano-Neto, M. L. B. Paciencia, M. Dixo, and J. Baumgarten. 2009. The challenge of maintaining Atlantic forest biodiversity: A multi-taxa conservation assessment of specialist and generalist species in an agro-forestry mosaic in southern Bahia. Biological Conservation 142:1178–1190.
- Peralta, G., C. M. Frost, R. K. Didham, A. Varsani, and J. M. Tylianakis. 2015. Phylogenetic diversity and co-evolutionary signals among trophic levels change across a habitat edge. The Journal of animal ecology 84:364–72.
- Prevedello, J. A., and M. V. Vieira. 2009. Does the type of matrix matter? A quantitative review of the evidence. Biodiversity and Conservation 19:1205–1223.
- R Core Team. 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
- Rigueira, D. M. G., P. L. B. Rocha, and E. Mariano-Neto. 2013. Forest cover, extinction thresholds and time lags in woody plants (Myrtaceae) in the Brazilian Atlantic Forest: resources for conservation. Biodiversity and Conservation 22:3141–3163.
- Roeder, M., M. Mcleish, P. Beckschäfer, M. de Blécourt, E. Paudel, R. D. Harrison, and F. Slik. 2015. Phylogenetic clustering increases with succession for lianas in a Chinese tropical montane rain forest. Ecography 38:001-010.
- Santo-Silva, E. E., B. A. Santos, V. Arroyo-rodríguez, F. P. L. Melo, D. Faria, E. Cazetta, E. Mariano-Neto, M. A. Hernández-Ruedas, and M. Tabarelli. 2018. Phylogenetic dimension of tree communities reveals high conservation value of disturbed tropical rainforests. Diversity and Distributions 24:776–790.
- Santos, B. A., V. Arroyo-Rodríguez, C. E. Moreno, and M. Tabarelli. 2010. Edge-related loss of tree phylogenetic diversity in the severely fragmented Brazilian Atlantic forest. PloS one 5:e12625.
- Santos, B. A., M. Tabarelli, F. P. L. Melo, J. L. C. Camargo, A. Andrade, S. G. Laurance, and W. F. Laurance. 2014. Phylogenetic impoverishment of amazonian tree communities in an experimentally fragmented forest landscape. PloS one 9:e113109.
- Schroth, G., D. Faria, M. Araujo, L. Bede, S. a. Bael, C. R. Cassano, L. C. Oliveira, and J. H. C. Delabie. 2011. Conservation in tropical landscape mosaics: the case of the cacao landscape of southern Bahia, Brazil. Biodiversity and Conservation 20:1635–1654.
- SOS Mata Atlântica, Instituto Nacional de Pesquisas Espaciais. Atlas dos remanescentes florestais da Mata Atlântica, período de 2011 a 2012. Available: http://www.sosma.org.br. Accessed 5 July 2014.
- Thomas, W. M. W., A. Carvalho, A. Amorim, J. Garrison, and A. Arbaláez. 1998. Plant endemism in two forests in southern Bahia, Brazil. Biodiversity and Conservation 7:311–322.
- Tilman, D., R. M. May, C. L. Lehman, and M. A. Nowak. 1994. Habitat destruction and the extinction debt. Nature 371:65–66.
- Tucker, C. M., M. W. Cadotte, S. B. Carvalho, T. J. Davies, S. Ferrier, S. A. Fritz, R. Grenyer, M. R. Helmus, S. Lanna, A. O. Mooers, S. Pavoine, O. Purschke, D. W. Redding, D. F. Rosauer, M. Winter, and F. Mazel. 2017. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biological Reviews 92:698–715.
- Vellend, M., K. Verheyen, H. Jacquemyn, A. Kolb, H. Van Calster, G. Peterken, and M. Hermy. 2006. Extinction debt of forest plants persists for more than a centuary following habitat fragmentation. Ecology 87:542–548.
- Vamosi, S. M., S. B. Heard, J. C. Vamosi, and C. O. Webb. 2009. Emerging patterns in the

comparative analysis of phylogenetic community structure. Molecular ecology 18:572–92.

- Webb, C. O., D. D. Ackerly, and S. W. Kembel. 2008. Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24:2098–2100.
- Webb, C. O., D. D. Ackerly, M. a. McPeek, and M. J. Donoghue. 2002. Phylogenies and Community Ecology. Annual Review of Ecology and Systematics 33:475–505.
- Webb, C. O., and M. J. Donoghue. 2005. Phylomatic: tree assembly for applied phylogenetics. Molecular Ecology Notes 5:181–183.
- Willis, C. G., B. Ruhfel, R. B. Primack, A. J. Miller-rushing, and C. C. Davis. 2008. Phylogenetic patterns of species loss in Thoreau's woods are driven by climate change. Proceedings of the National Academy of Sciences 105:17029–17033.
- Winter, M., V. Devictor, and O. Schweiger. 2013. Phylogenetic diversity and nature conservation: where are we? Trends in ecology & evolution 28:199–204.

Appendix S1. Sampled sites in southern Bahia, Brazil.

Detail of the buffer 20 sampled sites, with 600-m radius, showing the composition and spatial arrangement of all land-cover types. Below the circles indicates the region where it is located (A- Una region; B- Belmonte region) and the percentage of forest cover (The sum of old-growth and secondary forests).

Appendix S2. Adult time-calibrated phylogeny

Newick phylogenetic tree with 547 adult tree species based on the supertree version R20120829 for plants made available with Phylomatic and contained all taxa found. The branch lengths was adjust based in ages estimated by Bell et al. (2010).

(((((((((carpotroche brasiliensis:91.000000,((banara brasiliensis:71.000000,casearia arborea :71.000000, casearia_bahiensis:71.000000, casearia_commersoniana:71.000000, casearia_silve stris:71.000000,casearia_sp1:71.000000,macrothumia_kuhlmannii:71.000000,salicaceae_1:71 .000000,salicaceae_2:71.000000)salicaceae:14.000000,(paypayrola_blanchetiana:79.000000, paypayrola_sp1:79.000000,rinorea_guianensis:79.000000)violaceae:6.000000):6.000000):6.0 00000,((kielmeyera_elata:67.250000,(vismia_guianensis:56.000000,vismia_latifolia:56.0000 00, vismia baccifera: 56.000000) hypericaceae: 11.250000): 11.250000, (garcinia gardneriana: 6 0.000000,garcinia_macrophylla:60.000000,symphonia_globulifera:60.000000,tovomita_brevi staminea:60.000000,tovomita_choisyana:60.000000,tovomita_mangle:60.000000)clusiaceae: 18.500000):18.500000,caryocar_edule:97.000000,((couepia_belemii:26.000000,couepia_imp ressa:26.000000,couepia_monteclarensis:26.000000,hirtella_hebeclada:26.000000,licania_dis color:26.000000,licania hoehnei:26.000000,licania lamentanda:26.000000,licania littoralis:2 6.000000,licania_naviculistipula:26.000000,parinari_alvimii:26.000000,parinari_sp1:26.0000 00)chrysobalanaceae:55.500000,(stephanopodium_blanchetianum:66.000000,stephanopodiu m_organense:66.000000)dichapetalaceae:15.500000):15.500000,(byrsonima_alvimii:67.0000 00, byrsonima fanshawei:67.000000, byrsonima laxiflora:67.000000, byrsonima sericea:67.00 0000, byrsonima_stipulacea: 67.000000) malpighiaceae: 30.000000, (erythroxylum_martii: 79.00 0000,erythroxylum squamatum:79.000000)erythroxylaceae:18.000000,(actinostemon appen diculatus:89.000000, actinostemon_verticillatus:89.000000, alchornea_glandulosa:89.000000, a lchornea_triplinervia:89.000000,aparisthmium_cordatum:89.000000,chaetocarpus_echinocar pus:89.000000,croton_floribundus:89.000000,croton_macrobothrys:89.000000,euphorbiaceae 2:89.000000,euphorbiaceae 4:89.000000,euphorbiaceae 6:89.000000,euphorbiaceae 7:89.0

00000,glycydendron amazonicum:89.000000,hevea brasiliensis:89.000000,mabea brasiliens is:89.000000,mabea_piriri:89.000000,ophthalmoblapton_crassipes:89.000000,ophthalmoblap ton_pedunculare:89.000000,pausandra_megalophylla:89.000000,pera_glabrata:89.000000,po gonophora_schomburgkiana:89.000000,sapium_glandulosum:89.000000,sebastiania_gaudich audii:89.000000, sebastiania jacobinensis:89.000000, senefeldera multiflora:89.000000, tetror chidium_rubrivenium:89.000000)euphorbiaceae:8.000000,(humiria_balsamifera:48.500000,s chistostemon retusum:48.500000,vantanea bahiaensis:48.500000,vantanea compacta:48.500 000)humiriaceae:48.500000,quiina_glaziovii:97.000000,(hyeronima_alchorneoides:48.50000 0,margaritaria_nobilis:48.500000)phyllanthaceae:48.500000)malpighiales:6.000000,(sloanea guianensis:55.000000, sloanea obtusifolia:55.000000, sloanea sp1:55.000000) elaeocarpacea e:48.000000):6.000000,(cheiloclinium cognatum:71.000000,maytenus distichophylla:71.000 000, maytenus obtusifolia: 71.000000, maytenus patens: 71.000000, tontelea mauritioides: 71.0 00000)celastraceae:38.000000)celastrales_to_malpighiales:10.000000,(((((helicostylis_tomen tosa:15.666667,ficus_insipida:15.666667):15.666667,(brosimum_guianense:15.666667,brosi mum_rubescens:15.666667):15.666667):15.666667,ficus_americana:47.000000,ficus_christia nii:47.000000, ficus hirsuta:47.000000, ficus sp1:47.000000, maclura tinctoria:47.000000, sor ocea_guilleminiana:47.000000,((artocarpus_heterophyllus:23.500000,(clarisia_biflora:11.750 000, clarisia ilicifolia: 11.750000) clarisia: 11.750000): 11.750000, sorocea bonplandii: 35.25000 0):11.750000)moraceae:25.500000,(cecropia_cecropiifolia:46.000000,cecropia_hololeuca:46. 000000,cecropia_pachystachya:46.000000,pourouma_guianensis:46.000000,pourouma_molli s:46.000000,pourouma_velutina:46.000000)urticaceae:26.500000):25.500000,(abarema_turbi nata:77.000000,aeschynomene_sensitiva:77.000000,albizia_pedicellaris:77.000000,andira_an thelmia:77.000000, and ira_fraxinifolia:77.000000, and ira_legalis:77.000000, and ira_lewisii:77. 000000, and ira_marauensis: 77.000000, and ira_sp1: 77.000000, and ira_sp2: 77.000000, and ira_sp 3:77.000000, arapatiella_emarginata: 77.000000, arapatiella_psilophylla: 77.000000, bauhinia_s p1:77.000000,bowdichia_virgilioides:77.000000,calliandra_calycina:77.000000,chamaecrista

amorimii:77.000000, chamaecrista bahiae:77.000000, chamaecrista duartei:77.000000, copai fera_langsdorffii:77.000000,copaifera_trapezifolia:77.000000,dialium_guianense:77.000000, diplotropis_incexis:77.000000,dipteryx_sp1:77.000000,enterolobium_monjollo:77.000000,ex ostyles_venusta:77.000000,hymenaea_aurea:77.000000,hymenaea_oblongifolia:77.000000,h ymenolobium janeirense:77.000000,inga capitata:77.000000,inga cylindrica:77.000000,inga _luschnathiana:77.000000,inga_sp1:77.000000,inga_sp2:77.000000,inga_sp3:77.000000,inga _striata:77.000000,inga_thibaudiana:77.000000,inga_vera:77.000000,machaerium_hirtum:77. 000000,macrolobium_latifolium:77.000000,melanoxylon_brauna:77.000000,mimosa_sp1:77. 000000,moldenhawera_blanchetiana:77.000000,moldenhawera_floribunda:77.000000,parkia _pendula:77.000000,peltogyne_confertiflora:77.000000,peltogyne_sp1:77.000000,piptadenia _gonoacantha:77.000000,piptadenia_paniculata:77.000000,plathymenia_foliolosa:77.000000, poincianella pluviosa:77.000000, pterocarpus rohrii:77.000000, senegalia sp1:77.000000, sen na_multijuga:77.000000,stryphnodendron_pulcherrimum:77.000000,swartzia_macrostachya: 77.000000,swartzia_oblata:77.000000,swartzia_polita:77.000000,swartzia_simplex:77.00000 0,tachigali_densiflora:77.000000,tachigali_paratyensis:77.000000,vatairea_heteroptera:77.00 0000, vataireopsis araroba: 77.000000, zollernia glabra: 77.000000, zollernia latifolia: 77.00000 0)fabaceae:21.000000):21.000000):10.000000,((((((astronium_graveolens:73.000000,tapirira guianensis:73.000000,thyrsodium spruceanum:73.000000)anacardiaceae:14.416664,(protiu m_aracouchini:73.000000,protium_heptaphyllum:73.000000,protium_icicariba:73.000000,pr otium_sp1:73.000000,protium_warmingiana:73.000000,tetragastris_catuaba:73.000000)burse raceae:14.416664):14.416672,(((guarea_blanchetii:48.000000,trichilia_casaretti:48.000000,tri chilia_elegans:48.000000,trichilia_lepidota:48.000000,trichilia_silvatica:48.000000)meliacea e:16.208336,(almeidea_caerulea:51.000000,conchocarpus_macrophyllus:51.000000,dictyolo ma_vandellianum:51.000000,hortia_arborea:51.000000,pilocarpus_grandiflorus:51.000000,pi locarpus_sp1:51.000000,pilocarpus_spicatus:51.000000,rutaceae_1:51.000000,zanthoxylum_ nemorale:51.000000,zanthoxylum_rhoifolium:51.000000)rutaceae:13.208336,simarouba_am

ara:64.208336):13.208336,(allophylus edulis:53.000000,allophylus sericeus:53.000000,cupa nia_impressinervia:53.000000,cupania_oblongifolia:53.000000,cupania_racemosa:53.000000 ,cupania_rugosa:53.000000,cupania_scrobiculata:53.000000,cupania_sp2:53.000000,cupania _sp4:53.000000,cupania_tenuivalvis:53.000000,cupania_torta:53.000000,matayba_discolor:5 3.000000, matayba_guianensis: 53.000000, matayba_juglandifolia: 53.000000, sapindaceae_1:53 .000000, scyphonychium_multiflorum: 53.000000, talisia_cerasina: 53.000000, talisia_esculenta :53.000000)sapindaceae:24.416672):24.416664):14.416664,(jacaratia heptaphylla:112.00000 0,(apeiba_albiflora:44.000000,apeiba_tibourbou:44.000000,basiloxylon_brasiliensis:44.0000 00,ceiba_sp1:44.000000,eriotheca_globosa:44.000000,eriotheca_macrophylla:44.000000,hyd rogaster_trinervis:44.000000,luehea_divaricata:44.000000,pavonia_makoyana:44.000000,pav onia_morii:44.000000,quararibea_sp1:44.000000,quararibea_turbinata:44.000000,sterculia_a petala:44.000000)malvaceae:68.000000)malvales to brassicales:4.250000):4.250000,picram nia_glazioviana:120.500000):4.250000,((buchenavia_sp1:37.000000,combretum_sp1:37.000 000,terminalia_brasiliensis:37.000000)combretaceae:62.000000,((henriettea_succosa:65.0000 00,melastomataceae_1:65.000000,miconia_amoena:65.000000,miconia_centrodesma:65.0000 00, miconia dorsaliporosa: 65.000000, miconia hypoleuca: 65.000000, miconia minutiflora: 65. 000000,miconia_mirabilis:65.000000,miconia_prasina:65.000000,miconia_speciosa:65.0000 00,tibouchina francavillana:65.000000,tibouchina sp1:65.000000)melastomataceae:17.0000 00,(calyptranthes_sp1:41.000000,calyptranthes_sp4:41.000000,campomanesia_dichotoma:41. 000000, campomanesia_laurifolia: 41.000000, eugenia_adenantha: 41.000000, eugenia_astringe ns:41.000000,eugenia_ayacuchae:41.000000,eugenia_candolleana:41.000000,eugenia_excels a:41.000000,eugenia_florida:41.000000,eugenia_itapemirimensis:41.000000,eugenia_laciste ma:41.000000,eugenia_luschnathiana:41.000000,eugenia_magnifica:41.000000,eugenia_mel anogyna:41.000000,eugenia_pauciflora:41.000000,eugenia_pisiformis:41.000000,eugenia_pl atyphylla:41.000000,eugenia_plicata:41.000000,eugenia_prasina:41.000000,eugenia_prunifor mis:41.000000,eugenia_rostrata:41.000000,eugenia_schottiana:41.000000,eugenia_sp1:41.00

0000,eugenia sp10:41.000000,eugenia sp11:41.000000,myrcia racemosa:41.000000,eugenia _sp13:41.000000,eugenia_sp15:41.000000,eugenia_sp17:41.000000,eugenia_sp22:41.000000 ,eugenia_sp23:41.000000,eugenia_sp25:41.000000,eugenia_sp28:41.000000,eugenia_sp5:41. 000000,eugenia_sp6:41.000000,eugenia_sp7:41.000000,eugenia_sp9:41.000000,eugenia_sub terminalis:41.000000,eugenia_umbellata:41.000000,gomidesia_fenzliana:41.000000,marliere a_excoriata:41.000000,marlierea_obversa:41.000000,marlierea_racemosa:41.000000,marliere a rufa:41.000000,marlierea sp1:41.000000,marlierea sp2:41.000000,marlierea sp3:41.0000 00,marlierea_sp4:41.000000,marlierea_sucrei:41.000000,myrcia_anceps:41.000000,myrcia_c alyptranthoides:41.000000,myrcia_carvalhoi:41.000000,myrcia_eximia:41.000000,myrcia_gi gantea:41.000000,myrcia_pseudomarlierea:41.000000,myrcia_sp1:41.000000,myrcia_sp11:4 1.000000,myrcia_sp12:41.000000,myrcia_sp14:41.000000,myrcia_sp18:41.000000,myrcia_s p20:41.000000,myrcia sp24:41.000000,myrcia sp25:41.000000,myrcia sp27:41.000000,myr cia_sp28:41.000000,myrcia_sp3:41.000000,myrcia_sp9:41.000000,myrcia_splendens:41.000 000,myrcia_sylvatica:41.000000,myrcia_vittoriana:41.000000,myrciaria_guaquiea:41.000000 ,myrtaceae_15:41.000000,myrtaceae_32:41.000000,myrtaceae_34:41.000000,myrtaceae_35: 41.000000, myrtaceae 5:41.000000, neomitranthes langsdorfii:41.000000, plinia callosa:41.00 0000,plinia_edulis:41.000000,plinia_grandifolia:41.000000,plinia_muricata:41.000000,plinia rara:41.000000,plinia sp1:41.000000)myrtaceae:41.000000):17.000000)myrtales:25.750000)malvids:4.250000):4.250000,(((((((((aspidosperma_discolor:33.000000,aspidosperma_illustre :33.000000,aspidosperma_parvifolium:33.000000,aspidosperma_spruceanum:33.000000,geis sospermum_laeve:33.000000, himatanthus_articulatus:33.000000, himatanthus_bracteatus:33. 000000,himatanthus_phagedaenicus:33.000000,lacmellea_bahiensis:33.000000,macoubea_gu ianensis:33.000000,malouetia_cestroides:33.000000,rauvolfia_grandiflora:33.000000,taberna emontana_brasiliensis:33.000000,tabernaemontana_salzmannii:33.000000)apocynaceae:45.0 00000,(guettarda_platyphylla:69.000000,guettarda_sp1:69.000000,guettarda_viburnoides:69. 000000, ixora_muelleri: 69.000000, palicourea_blanchetiana: 69.000000, posoqueria_latifolia: 69

.000000,psychotria bahiensis:69.000000,psychotria mapourioides:69.000000,psychotria sp1 :69.000000,psychotria_tenerior:69.000000,psychotria_vellosiana:69.000000,randia_nitida:69. 000000,rubiaceae_1:69.000000,rubiaceae_2:69.000000,rubiaceae_4:69.000000,rubiaceae_6:6 9.000000,rubiaceae_7:69.000000,rudgea_involucrata:69.000000,rudgea_pachyphylla:69.0000 00, simira glaziovii:69.000000, tocovena bullata:69.000000, alseis floribunda:69.000000, alsei s_latifolia:69.000000,amaioua_guianensis:69.000000,bathysa_mendoncaei:69.000000,bathys a sp1:69.000000, chomelia pedunculosa:69.000000, cordiera bahiensis:69.000000, cordiera s p1:69.000000,coussarea_carvalhoi:69.000000,coussarea_ilheotica:69.000000,faramea_biflora :69.000000)rubiaceae:9.000000)gentianales:17.500000,((bignoniaceae_1:32.000000,handroan thus_chrysotrichus:32.000000, handroanthus_impetiginosus:32.000000, jacaranda_jasminoides :32.000000, jacaranda puberula: 32.000000, jacaranda sp2:32.000000, tabebuia cassinoides: 32 .000000,tabebuia elliptica:32.000000)bignoniaceae:40.250000,(solanum sooretamum:49.000 000,solanum_sp2:49.000000,aureliana_fasciculata:49.000000)solanaceae:23.250000):23.250 000,(cordia_anabaptista:73.000000,cordia_ecalyculata:73.000000,cordia_glabrifolia:73.0000 00,cordia_membranacea:73.000000,cordia_mucronata:73.000000,cordia_polycephala:73.000 000,cordia_sp3:73.000000,cordia_taguahyensis:73.000000,cordia_toqueve:73.000000,cordia _trachyphylla:73.000000)boraginaceae:22.500000):17.500000,emmotum_nitens:113.000000) lamiids:3.000000, schefflera morototoni:116.000000):3.000000, ((eschweilera ovata:65.0000 00,lecythis_lurida:65.000000,lecythis_pisonis:65.000000)lecythidaceae:27.000000,((diospyro s_sp1:66.6666664,(myrsine_coriacea:54.000000,myrsine_guianensis:54.000000)primulaceae:1 2.6666664):12.6666672,(chrysophyllum_gonocarpum:39.6666668,chrysophyllum_lucentifolium: 39.666668, chrysophyllum splendens: 39.666668, diploon cuspidatum: 39.666668, ecclinusa ra miflora:39.666668,manilkara_longifolia:39.666668,manilkara_maxima:39.666668,manilkara _multifida:39.666668,manilkara_salzmannii:39.666668,micropholis_crassipedicellata:39.666 668, micropholis_gardneriana: 39.666668, micropholis_guyanensis: 39.6666668, pouteria_4: 39.6 66668, pouteria_atlantica: 39.666668, pouteria_bangii: 39.6666668, pouteria_bapeba: 39.666668, p

outeria bilocularis:39.666668, pouteria grandiflora:39.666668, pouteria guianensis:39.66666 8, pouteria_macahensis: 39.666668, pouteria_macrophylla: 39.6666668, pouteria_microstrigosa: 3 9.666668, pouteria_peduncularis: 39.666668, pouteria_procera: 39.666668, pouteria_reticulata: 3 9.666668, pouteria_sp1:39.666668, pouteria_sp3:39.6666668, pouteria_sp4:39.6666668, pouteria_ venosa:39.666668, pradosia kuhlmannii:39.666668, pradosia lactescens:39.666668, pradosia sp2:39.6666668, sapotaceae_3:39.6666668) sapotaceae:39.6666668):12.6666664):27.000000) erical es to asterales:4.750000,((guapira hirsuta:32.000000,guapira laxiflora:32.000000,guapira n itida:32.000000,guapira_obtusata:32.000000,guapira_opposita:32.000000,guapira_sp1:32.000 000,neea_duckei:32.000000,neea_floribunda:32.000000,neea_macrophylla:32.000000,neea_ madeirana:32.000000,neea verticillata:32.000000)nyctaginaceae:83.000000,(coccoloba arbo rescens:58.000000,coccoloba_bullata:58.000000,coccoloba_glaziovii:58.000000,coccoloba_o blonga:58.000000,coccoloba rosea:58.000000,coccoloba sp1:58.000000)polygonaceae:57.00 0000)caryophyllales:8.750000):4.750000,(aptandra_sp1:64.250000,aptandra_tubicina:64.250 000, heisteria_ovata: 64.250000, heisteria_perianthomega: 64.250000, heisteria_sp2: 64.250000, s choepfia_brasiliensis:64.250000,tetrastilydium_brasiliense:64.250000,tetrastylidium_grandif olium:64.250000)olacaceae:64.250000):4.750000):4.750000,roupala_sp1:138.000000)sabiale s_to_asterales:2.000000,(allagoptera_caudescens:36.000000,bactris_ferruginea:36.000000,ba ctris setosa: 36.000000, euterpe edulis: 36.000000, syagrus botryophora: 36.000000) arecaceae: 104.00000)poales_to_asterales:16.000000,(((annona_cacans:36.000000,annona_glabra:36.0 00000,annona_leptopetala:36.000000,annona_muricata:36.000000,annona_neolaurifolia:36.0 00000,annona_salzmannii:36.000000,annona_sylvatica:36.000000,annonaceae_5:36.000000, guatteria_australis:36.000000,guatteria_oligocarpa:36.000000,guatteria_pogonopus:36.00000 0, hornschuchia_obliqua: 36.000000, pseudoxandra_bahiensis: 36.000000, rollinia_sp1: 36.00000 0,rollinia_sp2:36.000000,xylopia_aromatica:36.000000,xylopia_frutescens:36.000000,xylopi a_ochrantha:36.000000,xylopia_sericea:36.000000)annonaceae:60.000000,(virola_gardneri:1 8.000000, virola_officinalis:18.000000) myristicaceae:78.000000) magnoliales:30.000000, ((ani

ba_intermedia:22.000000,beilschmiedia_linharensis:22.000000,cryptocarya_mandioccana:22. 000000,lauraceae_2:22.000000,lauraceae_3:22.000000,lauraceae_4:22.000000,licaria_bahian a:22.000000,licaria_guianensis:22.000000,nectandra_membranacea:22.000000,nectandra_pur purea:22.000000,nectandra_sp1:22.000000,ocotea_aciphylla:22.000000,ocotea_cernua:22.00 0000,ocotea_divaricata:22.000000,ocotea_elegans:22.000000,ocotea_indecora:22.000000,ocotea_ insignis:22.000000,ocotea_longifolia:22.000000,ocotea_macrophylla:22.000000,ocotea_ montana:22.000000,ocotea_notata:22.000000,ocotea_oppositifolia:22.000000,ocotea_percori acea:22.000000,ocotea_puberula:22.000000,ocotea_sp1:22.000000)lauraceae:52.000000,sipa runa_guianensis:74.000000):52.000000):30.000000)magnoliales_to_asterales:1.000000;
Appendix S3. Juvenile time-calibrated phylogeny

Newick phylogenetic tree with 609 juveniles tree species based on the supertree version R20120829 for plants made available with Phylomatic and contained all taxa found. The branch lengths was adjust based in ages estimated by Bell et al. (2010).

((((((((carpotroche_brasiliensis:93.000000,(((lacistema_robustum:81.000000,lacistema_sp2:8 1.000000)lacistemataceae:4.000000,(banara_brasiliensis:71.000000,casearia_bahiensis:71.00 0000,casearia_commersoniana:71.000000,casearia_sp1:71.000000,casearia_sp2:71.000000,x ylosma_sp2:71.000000,xylosma_sp3:71.000000)salicaceae:14.000000):4.000000,(paypayrola _blanchetiana:79.000000,rinorea_guianensis:79.000000)violaceae:10.000000):4.000000):4.00 0000,((couepia_belemii:26.000000,couepia_bondarii:26.000000,hirtella_sp1:26.000000,hirtel la_sp2:26.000000,licania_belemii:26.000000,licania_hoehnei:26.000000,licania_hypoleuca:2 6.000000,licania_lamentanda:26.000000,licania_littoralis:26.000000,licania_naviculistipula:2 6.000000,licania_octandra:26.000000,licania_sp1:26.000000)chrysobalanaceae:35.500000,ste phanopodium magnifolium:61.500000):35.500000,((garcinia gardneriana:60.000000,symph onia_globulifera:60.000000,tovomita_choisyana:60.000000,tovomita_mangle:60.000000,tov omita umbellata:60.000000)clusiaceae:18.500000,vismia guianensis:78.500000):18.500000, roucheria_columbiana:97.000000,(bunchosia_sp1:67.000000,byrsonima_sericea:67.000000,b yrsonima_sp2:67.000000,byrsonima_stipulacea:67.000000)malpighiaceae:30.000000,(erythro xylum_columbinum:79.000000,erythroxylum_compressum:79.000000,erythroxylum_cuspidi folium:79.000000,erythroxylum martii:79.000000,erythroxylum mattos silvae:79.000000,er ythroxylum_squamatum:79.000000)erythroxylaceae:18.000000,(elvasia_tricarpellata:60.0000 00,lacunaria sp1:60.000000,ouratea papulosa:60.000000,ouratea sp2:60.000000,quiina glaz iovii:60.000000)ochnaceae:37.000000,(discocarpus_pedicellatus:48.500000,margaritaria_nob ilis:48.500000,phyllanthus_sp1:48.500000)phyllanthaceae:48.500000,dryptes_sessiliflora:97. 000000,(actinostemon_appendiculatus:89.000000,actinostemon_sp2:89.000000,actinostemon sp3:89.000000, actinostemon verticillatus: 89.000000, adenophaedra megalophylla: 89.00000

0,alchornea triplinervia:89.000000,algernonia leandrii:89.000000,aparisthmium cordatum:8 9.000000,bernardia_scabra:89.000000,bernardia_sp1:89.000000,chaetocarpus_sp1:89.000000 ,croton_macrobothrys:89.000000,euphorbiaceae_1:89.000000,euphorbiaceae_3:89.000000,eu phorbiaceae_8:89.000000,mabea_brasiliensis:89.000000,ophthalmoblapton_crassipes:89.000 000, pausandra megalophylla: 89.000000, pausandra morisiana: 89.000000, pera glabrata: 89.00 0000,pogonophora_schomburgkiana:89.000000,sebastiania_multiramea:89.000000,sebastiani a sp1:89.000000, senefeldera verticillata:89.000000) euphorbiaceae:8.000000, humiriaceae 1: 97.000000)malpighiales:6.000000,((connarus_sp1:39.500000,connarus_sp2:39.500000)conna raceae:39.500000,(sloanea_guianensis:55.000000,sloanea_sp1:55.000000)elaeocarpaceae:24. 000000):24.000000):6.000000,(maytenus distichophylla:71.000000,maytenus sp2:71.00000 0)celastraceae:38.000000)celastrales_to_malpighiales:10.599998,(((((helicostylis_tomentosa: 31.333334,(brosimum guianense:15.666667,brosimum rubescens:15.6666667):15.666667):15 .6666667, ficus_sp2:47.000000, sorocea_guilleminiana:47.000000, sorocea_hilarii:47.000000, so rocea_racemosa:47.000000)moraceae:17.099998,(cecropia_cecropiifolia:46.000000,cecropia _sp1:46.000000,pourouma_velutina:46.000000)urticaceae:18.099998):17.100006,rhamnidiu m sp1:81.200005):17.099998, (albizia pedicellaris:77.000000, albizia sp1:77.000000, and ira fraxinifolia:77.000000, and ira_legalis:77.000000, and ira_sp4:77.000000, arapatiella_emarginat a:77.000000, arapatiella psilophylla:77.000000, blanchetiodendron blanchetii:77.000000, brod riguesia_santosii:77.000000,calliandra_calycina:77.000000,chamaecrista_amorimii:77.00000 0,chamaecrista_bahiae:77.000000,chamaecrista_duartei:77.000000,chamaecrista_sp1:77.0000 00,chamaecrista_sp2:77.000000,copaifera_lucens:77.000000,dialium_guianense:77.000000,e xostyles_venusta:77.000000,fabaceae_1:77.000000,fabaceae_2:77.000000,fabaceae_3:77.000 000,fabaceae_4:77.000000,fabaceae_5:77.000000,fabaceae_6:77.000000,harleyodendron_uni foliolatum:77.000000,inga_sp4:77.000000,inga_sp5:77.000000,inga_sp6:77.000000,inga_sub nuda:77.000000,inga_thibaudiana:77.000000,inga_vera:77.000000,machaerium_brasiliense:7 7.000000,machaerium_sp1:77.000000,macrolobium_latifolium:77.000000,melanoxylon_brau

na:77.000000,moldenhawera sp1:77.000000,moldenhawera sp2:77.000000,ormosia sp1:77. 000000, parkia_pendula: 77.000000, peltogyne_confertiflora: 77.000000, peltogyne_sp1: 77.0000 00,piptadenia_gonoacantha:77.000000,poecilanthe_sp1:77.000000,poincianella_pluviosa:77. 000000, pterocarpus_rohrii:77.000000, senegalia_miersii:77.000000, senna_multijuga:77.0000 00,senna_sp1:77.000000,stryphnodendron_pulcherrimum:77.000000,swartzia_apetala:77.000 000, swartzia_macrostachya: 77.000000, swartzia_oblata: 77.000000, swartzia_polita: 77.000000 ,swartzia_simplex:77.000000,swartzia_sp2:77.000000,tachigali_densiflora:77.000000,tachiga li_paratyensis:77.000000,tachigali_sp1:77.000000,vataireopsis_sp1:77.000000,zollernia_ilici folia:77.000000,zollernia_modesta:77.000000)fabaceae:21.300003):21.299995):10.599998,((((((tapirira guianensis:73.000000,thyrsodium spruceanum:73.000000)anacardiaceae:14.5166 70,(protium_aracouchini:73.000000,protium_heptaphyllum:73.000000,protium_sp2:73.00000 0, protium warmingiana: 73.000000, tetragastris catuaba: 73.000000) burseraceae: 14.516670): 1 4.516663,(((cabralea_canjerana:48.000000,cedrela_odorata:48.000000,guarea_blanchetii:48.0 00000,guarea_guidonia:48.000000,guarea_sp1:48.000000,meliaceae_1:48.000000,meliaceae _2:48.000000,meliaceae_3:48.000000,meliaceae_4:48.000000,trichilia_casaretti:48.000000,tr ichilia_elegans:48.000000,trichilia_lepidota:48.000000,trichilia_silvatica:48.000000,trichilia_ sp1:48.000000)meliaceae:16.758331,(almeidea_caerulea:51.000000,conchocarpus_macrophy llus:51.000000,pilocarpus grandiflorus:51.000000,pilocarpus riedelianus:51.000000,pilocarp us_spicatus:51.000000,zanthoxylum_nemorale:51.000000)rutaceae:13.758331,(simaba_cedro n:52.000000,simarouba_amara:52.000000)simaroubaceae:12.758331):12.758331,(allophylus _edulis:53.000000,allophylus_sericeus:53.000000,allophylus_sp1:53.000000,cupania_bracteo sa:53.000000,cupania_emarginata:53.000000,cupania_rugosa:53.000000,cupania_sp1:53.000 000,cupania_sp3:53.000000,cupania_sp4:53.000000,cupania_tenuivalvis:53.000000,cupania_ torta:53.000000,sapindaceae_3:53.000000,scyphonychium_multiflorum:53.000000,talisia_cer asina:53.000000)sapindaceae:24.516663):24.516670):14.516670,((capparaceae_1:56.000000, cynophalla_flexuosa:56.000000)capparaceae:56.000000,((apeiba_albiflora:44.000000,basilox

ylon brasiliensis:44.000000,eriotheca macrophylla:44.000000,eriotheca sp1:44.000000,lueh ea_divaricata:44.000000,malvaceae_1:44.000000,pavonia_makoyana:44.000000)malvaceae:3 6.500000,(daphnopsis_racemosa:49.000000,daphnopsis_sp1:49.000000)thymelaeaceae:31.50 0000):31.500000)malvales_to_brassicales:4.550003):4.549995,(picramnia_ciliata:60.549999, picramnia coccinea:60.549999,picramnia glazioviana:60.549999)picramniaceae:60.549999): 4.550003,(combretaceae_1:99.000000,((henriettea_succosa:65.000000,leandra_rufescens:65. 000000, melastomataceae 2:65.000000, melastomataceae 3:65.000000, melastomataceae 4:65 .000000,miconia_amoena:65.000000,miconia_hypoleuca:65.000000,miconia_minutiflora:65. 000000,miconia_nervosa:65.000000,miconia_prasina:65.000000,miconia_sp1:65.000000,mic onia_sp2:65.000000)melastomataceae:29.333336,((calyptranthes_grandifolia:44.833332,caly ptranthes_sp3:44.833332,calyptranthes_sp5:44.833332,calyptranthes_sp6:44.833332,eugenia adenantha:44.833332,eugenia aff pauciflora:44.833332,eugenia aff pleurantha:44.833332, eugenia_aff_prasina:44.833332,eugenia_aff_rostrata:44.833332,eugenia_astringens:44.83333 2,eugenia_ayacuchae:44.833332,eugenia_batingabranca:44.833332,eugenia_blastantha:44.83 3332,eugenia_candolleana:44.833332,eugenia_excelsa:44.833332,eugenia_excoriata:44.8333 32, eugenia_flamingensis:44.833332, eugenia_itapemirimensis:44.833332, eugenia_luschnathia na:44.833332,eugenia_magnifica:44.833332,eugenia_melanogyna:44.833332,eugenia_persici folia:44.833332,eugenia pisiformis:44.833332,eugenia plicata:44.833332,eugenia pruniform is:44.833332,eugenia_schottiana:44.833332,eugenia_sp1:44.833332,eugenia_sp10:44.833332 ,eugenia_sp15:44.833332,neomitranthes_langsdorfii:44.833332,plinia_callosa:44.833332,plin ia_rara:44.833332,myrcia_racemosa:44.833332,eugenia_sp18:44.833332,eugenia_sp19:44.83 3332,eugenia_sp20:44.833332,eugenia_sp22:44.833332,eugenia_sp23:44.833332,eugenia_sp 24:44.833332,eugenia_sp27:44.833332,eugenia_sp29:44.833332,eugenia_sp3:44.833332,eug enia_sp30:44.833332,eugenia_sp31:44.833332,eugenia_sp34:44.833332,eugenia_sp35:44.83 3332,eugenia_sp36:44.833332,eugenia_sp37:44.833332,eugenia_sp38:44.833332,eugenia_sp 39:44.833332,eugenia_sp4:44.833332,eugenia_sp40:44.833332,eugenia_sp41:44.833332,eug

enia_sp43:44.833332,eugenia_sp44:44.833332,eugenia_sp45:44.833332,eugenia_sp46:44.83 3332,eugenia_sp47:44.833332,eugenia_sp48:44.833332,eugenia_sp49:44.833332,eugenia_sp 50:44.833332,eugenia_sp51:44.833332,eugenia_sp52:44.833332,eugenia_sp53:44.833332,eu genia_sp7:44.833332,gomidesia_langsdorffii:44.833332,marlierea_aff_obversa:44.833332,m arlierea_excoriata:44.833332,marlierea_neuwiedeana:44.833332,marlierea_sp2:44.833332,m arlierea_sp4:44.833332,marlierea_sp6:44.833332,marlierea_sp7:44.833332,marlierea_sp8:44. 833332, marlierea_suaveolens:44.833332, myrceugenia_acutiflora:44.833332, myrcia_acumina tissima:44.833332,myrcia_aff_crocea:44.833332,myrcia_aff_racemosa:44.833332,myrcia_ca rvalhoi:44.833332,myrcia_felisberti:44.833332,myrcia_grandifolia:44.833332,myrcia_sp15:4 4.833332,myrcia_sp17:44.833332,myrcia_sp19:44.833332,myrcia_sp2:44.833332,myrcia_sp 21:44.833332,myrcia_sp22:44.833332,myrcia_sp26:44.833332,myrcia_sp29:44.833332,myrc ia sp3:44.833332,myrcia sp30:44.833332,myrcia sp31:44.833332,myrcia sp32:44.833332, myrcia_sp33:44.833332,myrcia_sp34:44.833332,myrcia_sp35:44.833332,myrcia_sp36:44.83 3332,myrcia_sp37:44.833332,myrcia_sp8:44.833332,myrcia_springiana:44.833332,myrcia_s ylvatica:44.833332,myrcia_tetraphylla:44.833332,myrcia_vittoriana:44.833332,myrciaria_flo ribunda:44.833332,myrtaceae_1:44.833332,myrtaceae_10:44.833332,myrtaceae_11:44.83333 2,myrtaceae_12:44.833332,myrtaceae_13:44.833332,myrtaceae_14:44.833332,myrtaceae_16 :44.833332,myrtaceae 17:44.833332,myrtaceae 18:44.833332,myrtaceae 19:44.833332,myr taceae_20:44.833332,myrtaceae_21:44.833332,myrtaceae_22:44.833332,myrtaceae_23:44.83 3332,myrtaceae_24:44.833332,myrtaceae_25:44.833332,myrtaceae_26:44.833332,myrtaceae _27:44.833332,myrtaceae_28:44.833332,myrtaceae_29:44.833332,myrtaceae_30:44.833332, myrtaceae_31:44.833332,myrtaceae_33:44.833332,myrtaceae_4:44.833332,myrtaceae_6:44. 833332,myrtaceae_8:44.833332,myrtaceae_9:44.833332,neomitranthes_glomerata:44.833332)myrtaceae:44.833332,(vochysia_sp1:85.000000,vochysia_sp2:85.000000)vochysiaceae:4.66 6664):4.6666672):4.6666667)myrtales:26.650002)malvids:4.549995):4.550003,(((((((aspidospe rma_discolor:33.000000,aspidosperma_parvifolium:33.000000,aspidosperma_sp1:33.000000,

aspidosperma spruceanum:33.000000, himatanthus articulatus:33.000000, macoubea guianen sis:33.000000,malouetia_cestroides:33.000000,rauvolfia_grandiflora:33.000000,tabernaemon tana_laeta:33.000000,tabernaemontana_salzmannii:33.000000)apocynaceae:45.000000,(alsei s_sp1:69.000000,amaioua_guianensis:69.000000,amaioua_sp1:69.000000,bathysa_mendonca ei:69.000000, chiococca_alba:69.000000, chomelia_anisomeris:69.000000, cordiera_bahiensis: 69.000000,cordiera_sp2:69.000000,cordiera_sp3:69.000000,cordiera_sp4:69.000000,cordiera sp5:69.000000,cordiera sp6:69.000000,coussarea carvalhoi:69.000000,coussarea contracta :69.000000,coussarea_graciliflora:69.000000,faramea_axilliflora:69.000000,faramea_bicolor: 69.000000,faramea_coerulea:69.000000,faramea_nocturna:69.000000,ferdinandusa_edmundo i:69.000000,guettarda_angelica:69.000000,guettarda_viburnoides:69.000000,ixora_muelleri:6 9.000000, margaritopsis_cephalantha: 69.000000, margaritopsis_chaenotricha: 69.000000, marg aritopsis sp1:69.00000, melanopsidium nigrum:69.000000, palicourea guianensis:69.00000 0,palicourea_sp1:69.000000,posoqueria_latifolia:69.000000,psychotria_cupularis:69.000000, psychotria_hoffmanseggiana:69.000000,psychotria_leiocarpa:69.000000,psychotria_mapouri oides:69.000000,psychotria_platypoda:69.000000,psychotria_racemosa:69.000000,psychotria schlechtendaliana:69.000000,psychotria sp2:69.000000,psychotria sp3:69.000000,psychotr ia_sp4:69.000000,psychotria_tenerior:69.000000,psychotria_vellosiana:69.000000,randia_ar mata:69.000000,randia sp1:69.000000,randia sp2:69.000000,ronabea latifolia:69.000000,ru dgea_aff_celastrinea:69.000000,rudgea_aff_pachphylla:69.000000,rudgea_involucrata:69.00 0000,rudgea_magnoliaefolia:69.000000,rudgea_sp2:69.000000,schizocalyx_cuspidatus:69.00 0000,simira_sp1:69.000000,simira_sp2:69.000000,simira_sp3:69.000000,simira_sp4:69.0000 00, stachyarrhena harleyi:69.000000, coutarea hexandra:69.000000) rubiaceae:9.000000) genti anales:18.000000,((((((handroanthus_sp1:32.000000,jacaranda_sp3:32.000000,jacaranda_sp4: 32.000000, jacaranda_sp5:32.000000, tabebuia_elliptica: 32.000000, tabebuia_sp1:32.000000, ta bebuia_sp2:32.000000)bignoniaceae:14.750000,lantana_sp1:46.750000):14.750000,(aegiphil a_fluminensis:50.000000,aegiphila_sp1:50.000000)lamiaceae:11.500000):11.500000,chionan

thus sp1:73.000000):11.500000,(brunfelsia sp1:49.000000,cestrum laevigatum:49.000000,s olanum_sp3:49.000000,solanum_sp4:49.000000,solanum_sp5:49.000000)solanaceae:35.5000 00):11.500000,(cordia_anabaptista:73.000000,cordia_ecalyculata:73.000000,cordia_nodosa:7 3.000000,cordia_sellowiana:73.000000,cordia_sp1:73.000000,cordia_sp2:73.000000,cordia_ sp4:73.000000,cordia_sp5:73.000000,cordia_trachyphylla:73.000000,varronia_multicapitata: 73.000000)boraginaceae:23.000000):18.000000,((ilex_sp1:101.000000,discophora_guianensi s:101.000000)aquifoliales:8.000000,((oreopanax_sp1:28.000000,schefflera_aurata:28.000000 ,schefflera_morototoni:28.000000)araliaceae:52.500000,(piptocarpha_sp1:52.000000,verbesi na_sp2:52.000000)asteraceae:28.500000):28.500000)campanulids:5.000000):5.000000,((cari niana_estrellensis:65.000000,eschweilera_complanata:65.000000,eschweilera_mattos_silvae: 65.000000,eschweilera_ovata:65.000000,lecythis_lurida:65.000000,lecythis_pisonis:65.0000 00,lecythis sp1:65.000000)lecythidaceae:27.000000,((diospyros mellinonii:66.666664,(clavi ja_caloneura:54.000000,cybianthus_sp1:54.000000,myrsine_sp1:54.000000)primulaceae:12.6 66664):12.666672,(chrysophyllum_lucentifolium:39.6666668,chrysophyllum_splendens:39.66 6668, diploon_cuspidatum: 39.666668, ecclinusa_ramiflora: 39.6666668, manilkara_longifolia: 39 .666668, micropholis_crassipedicellata:39.666668, micropholis_gardneriana:39.666668, microp holis_guyanensis:39.666668,pouteria_atlantica:39.666668,pouteria_bangii:39.666668,pouteri a glauca: 39.666668, pouteria grandiflora: 39.666668, pouteria macrophylla: 39.666668, pouteri a_peduncularis:39.666668,pouteria_reticulata:39.666668,pouteria_sp2:39.6666668,pouteria_sp 3:39.6666668, pouteria_sp5:39.6666668, pouteria_sp6:39.6666668, pouteria_sp7:39.6666668, pouter ia_torta:39.666668,pradosia_kuhlmannii:39.666668,pradosia_lactescens:39.666668,pradosia_ sp1:39.666668)sapotaceae:39.666668):12.666664):27.000000)ericales_to_asterales:5.250000, ((guapira_hirsuta:32.000000,guapira_laxiflora:32.000000,guapira_opposita:32.000000,guapir a_sp2:32.000000,guapira_sp3:32.000000,neea_macrophylla:32.000000,neea_madeirana:32.0 00000,neea_verticillata:32.000000,pisonia_comosa:32.000000)nyctaginaceae:83.000000,(coc coloba_arborescens:58.000000,coccoloba_bullata:58.000000,coccoloba_declinata:58.000000,

coccoloba marginata:58.000000,coccoloba oblonga:58.000000,coccoloba sp1:58.000000,co ccoloba_sp3:58.000000)polygonaceae:57.000000)caryophyllales:9.250000):5.250000,(heister ia_perianthomega:64.750000,schoepfia_brasiliensis:64.750000,tetrastylidium_grandifolium:6 4.750000)olacaceae:64.750000):5.250000,dilleniaceae_1:134.750000):5.250000,(bactris_glas smanii:36.000000,desmoncus_orthacanthos:36.000000,euterpe_edulis:36.000000,geonoma_e legans:36.000000,geonoma_pauciflora:36.000000,geonoma_pohliana:36.000000)arecaceae:1 04.00000)poales_to_asterales:16.000000,((((anaxagorea_dolichocarpa:36.000000,annona_b ahiensis:36.000000,annona_glabra:36.000000,annona_salzmannii:36.000000,annona_sp1:36. 000000,annona_sp2:36.000000,annonaceae_2:36.000000,cymbopetalum_brasiliense:36.0000 00,duguetia_chrysocarpa:36.000000,guatteria_candolleana:36.000000,guatteria_glabrescens: 36.000000,guatteria_oligocarpa:36.000000,guatteria_pogonopus:36.000000,hornschuchia_br yotrophe:36.000000,pseudoxandra bahiensis:36.000000,unonopsis bahiensis:36.000000,xylo pia_sericea:36.000000)annonaceae:60.000000,(virola_gardneri:18.000000,virola_officinalis:1 8.000000)myristicaceae:78.000000)magnoliales:21.000000,((((lauraceae_9:22.000000,licaria _bahiana:22.000000,nectandra_membranacea:22.000000,nectandra_purpurea:22.000000,ocot ea_aciphylla:22.000000,ocotea_elegans:22.000000,ocotea_glomerata:22.000000,ocotea_inde cora:22.000000,ocotea_leucoxylon:22.000000,ocotea_longifolia:22.000000,ocotea_oppositifo lia:22.000000,ocotea percurrens:22.000000,ocotea puberula:22.000000,ocotea sp2:22.0000 00,ocotea_sp3:22.000000,ocotea_sp4:22.000000,ocotea_sp5:22.000000,aniba_intermedia:22. 000000,lauraceae_10:22.000000,lauraceae_11:22.000000,lauraceae_12:22.000000,lauraceae_ 13:22.000000,lauraceae_14:22.000000,lauraceae_6:22.000000,lauraceae_7:22.000000)laurac eae:27.500000,sparattanthelium_botocudorum:49.500000):27.500000,(mollinedia_sp1:57.00 0000,mollinedia_sp2:57.000000,mollinedia_sp3:57.000000)monimiaceae:20.000000):20.000 000,(siparuna_guianensis:48.500000,siparuna_sp1:48.500000)siparunaceae:48.500000):20.00 0000):21.000000,(piper_divaricatum:56.000000,piper_sp1:56.000000,piper_sp5:56.000000,p iper_sp6:56.000000)piperaceae:82.000000)magnoliids:18.000000)magnoliales_to_asterales:1

.000000;

<u>Capítulo 3</u>

Taxonomic and phylogenetic β -diversity in a gradient of forest loss: Different responses of adult and juvenile tree assemblages

TAXONOMIC AND PHYLOGENETIC B-DIVERSITY IN A GRADIENT OF FOREST LOSS: DIFFERENT RESPONSES OF ADULT AND JUVENILE TREE ASSEMBLAGES

Edyla Ribeiro de Andrade¹*, Víctor Arroyo-Rodríguez², Bráulio A. Santos³, Gustavo Souza⁴, Eliana Cazetta¹.

¹Applied Conservation Ecology Lab, Programa de Pós-graduação Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km16, Salobrinho, 45662-000 Ilhéus, Bahia, Brazil

² Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, Mexico

³Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Cidade Universitária, 58051-900, João Pessoa, Paraíba, Brazil

⁴Departamento de Botânica, Universidade Federal de Pernambuco, Av. Professor Moraes Rego s/n, Cidade Universitária, 50670-901, Recife, Pernambuco, Brazil.

*Correspondence: Edyla Ribeiro de Andrade, Applied Conservation Ecology Lab, Programa de Pós-graduação Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil.

E-mail: <u>edylaandrade@gmail.com</u>

This manuscript will be submitted to Oecologia.

Abstract

Habitat loss is the main cause of the global biodiversity loss including changes on forest structure, population decline, species extinction, and also direct and indirect effects on ecological processes. It is of paramount importance to understand the impacts of this new habitat configuration on the spatial dissimilarities in the remaining species assemblages. However, groups from different life-stages can exhibit different responses to disturbances, including delayed effects. We gather a data set of adult and juvenile tree assemblages in 20 forest sites covering a wide variation of habitat amount in the landscape-scale (ranging from 5-99%) in the Atlantic forest of Brazil. We assess β -taxonomic and phylogenetic diversity of adult and juvenile assemblages. We included information on β -diversity because evolutionary history has been argued to capture the diversity of life better than simple measures of taxonomic richness. When we evaluated the β -diversity of plant communities across the gradient of forest loss, we found that the β -taxonomic diversity was higher in common than dominant lineages, and 14.2% higher in adults than juvenile. Furthermore, the taxonomic β -diversity of adults was very similar between shade-tolerant and shade-intolerant species and the juvenile assemblage showed a higher β -diversity of shade-tolerant than shade-intolerant species. The phylo- β diversity was very similar between the ontogenetic stages independent of the regeneration strategy. Site location was the best predictor of beta-diversity between forest fragments and forest cover was a good predictor only for taxonomic β -diversity. The turnover of species between juvenile and adult trees within each forest site showed differences in shade-tolerant and shade-intolerant species, independent of the q order. However, only the phylo- β -diversity was affected by forest loss. Our results highlight that the lineage turnover is not high between forest sites, although some species seem to substitute each other along the different landscapes. Within each forest site, forest loss favours the regeneration of less related lineages (i.e. lineage divergence among juveniles and trees), increasing the phylogenetic turnover between tree and juvenile assemblages. Although taxonomic β -diversity between juveniles and adults was similar across the gradient of forest cover, the lineages of recruiting species in the more deforested landscapes were different from those present in the adult community, leading to a shift in the natural communities in these environments with a delayed response. In this way, forest loss might be driving changes in species recruitment, culminating in a future community with a different evolutionary heritage in relation to natural communities in forested landscapes.

Key-words: Turnover, Ontogenetic stages, Shade tolerance, Atlantic Forest

Introduction

Habitat loss is the main cause of the global biodiversity loss, mainly in tropical forests (Ellis 2013; Laurance et al. 2014; Malhi et al. 2014). The increasing deforestation rates lead to severe impacts on biodiversity, including changes on forest structure, population decline, species extinction, and direct and indirect effects on ecological processes (Fahrig 2003; Morante-Filho et al. 2016; Rocha-Santos et al. 2016, 2017). Additionally, forest loss has converted once continuous forests into a mosaic of forest patches surrounded by anthropogenic matrices (Melo et al. 2013), and biodiversity maintenance in these landscapes represents one of the greatest conservation challenges (Gardner et al. 2009).

However, the impact of such a new habitat configuration on the spatial dissimilarities in species composition (β -diversity) remains poorly understood, particularly in the tropics (Karp et al. 2012). The majority of studies examining species loss in human-modified landscapes have focused on alpha diversity (Whittaker et al. 2001), but this local diversity typically represents only a small fraction of the regional species pool (MacArthur 1972). The evaluation of other biodiversity components, such as beta diversity, is also essential for understanding how species diversity is organized and maintained (Condit et al. 2002; Flohre et al. 2011). Moreover, the inclusion of evolutionary history information has been argued to capture the diversity of life better than simple measures of taxonomic richness (Purvis 2008). Variation in phylogenetic diversity through space is often hypothesized to be an outcome of different ecological and evolutionary processes (Cavender-Bares et al. 2009; Mouquet et al. 2012). Therefore, evaluating the beta component of phylogenetic diversity is of paramount importance to connect local to regional processes in human-modified landscapes (Graham and Fine 2008; Moreno et al. 2017; Swenson 2011; Tucker et al. 2017).

Beta diversity of tropical trees across forest patches or landscapes might respond in two contrasting ways. First, beta diversity can decrease, due to a process called floristic homogenization in which a proliferation/dominance of pioneer species in forest fragments is observed (Laurance et al. 2006; Tabarelli et al. 2012). Second, beta diversity can increase through floristic differentiation. The latter might occur due to a process related mainly to dispersal limitation (Hubbell 2001) and heterogeneity of landscape conditions (Laurance et al. 2007; Arroyo-Rodríguez et al. 2013). A recent study in deforested landscapes in Mexico showed that floristic differentiation among patches is the prevailing process (Arroyo-Rodriguez et al. 2013). However, we do not know whether this pattern holds widely across distinct landscapes and forests. Also, beta-diversity within forest patches in general lead to floristic homogenization (Arroyo-Rodriguez et al. 2013).

These changes on occurrence and abundance of species can be result of two main demographic bottlenecks that might affect plant recruitment success – source and dispersal limitation. Habitat loss directly affect species diversity (Fahrig 2003; Pardini et al. 2010; Rigueira 2013; Andrade et al. 2015; Thompson et al. 2017) which in turn might result in resource limitation. Also, habitat loss might indirectly affect resource production (Pessoa et al. 2017; Tabarelli et al. 1999) by affecting pollinatior diversity, for instance. In addition, in human modified landscapes several process such as increase isolation, (Turner and Corlett 1996), reduction in seed disperser diversity (Galetti et al. 1997; Chiarello 1999; Cullen et al. 2000) and microclimatic modifications (Murcia 1995; Turton and Freiburger 1997) might contribute to seed dispersal limitation. Two recent reviews showed that animal seed dispersal is negatively affected by anthopogenic disturbances (Fontúrbel et al. 2015, McConkey and O'Farrill 2016), favoring a reduced subset of species.

However, evidences indicates that different groups of species may vary with the disturbance in different ways (Orihuela et al. 2015). Many species decline in altered habitats, whereas others persist or even thrive. In general, shade-tolerant trees and those bearing large-seeds are negatively affected by forest loss (Freitas et al. 2013; Rocha-Santos et al. 2017). On the contrary, shade-intolerant species, with large crop production and small seeds tend to thrive in modified habitats (Bongers et al. 2009). In addition, slow-growth species tend to show slow

responses to landscape changes (Metzger et al. 2009). Therefore, sudies based only on adult tree assemblages might fail in the evaluation of compensatory dynamics and underestimate the impacts of habitat loss on plant communities, including extinction debts (Tilman et al. 1994; Vellend et al. 2006).

Here, we gathered a robust dataset of adult and juvenile tree assemblages in 20 fragments covering a wide variation of habitat amount in the surrounding landscapes (ranging from 5-99%) in the Atlantic forest in southern Bahia. Our main objective was to assess taxonomic and phylogenetic β -diversity of tree assemblages using Hill Numbers. First, we compared the β -diversity of adult and juvenile communities across a gradient of forest loss and also tested for differences considering shade-tolerant and shade-intolerant species. Then, we assessed the main landscape drivers of β -diversity between forest sites (geographic distance, forest cover, and edge amount). Second, we evaluated β -diversity whithin forest fragments and assessed the influence of forest loss on taxonomic and phylogenetic β -diversity between juveniles and adults assemblages and the differences in the responses of shade-tolerant and shade-intolerant species. Across forest sites, we expected higher taxonomic and phylogenetic β-diversity in juvenile assemblage, and mainly on shade-tolerant species if floristic differentiation is operating across multiple spatial scales. In relation to landscape predictors, we expected that in addition to forest cover, the geographic distance would also be responsible for the variation in β -diversity because more distant sites present more barriers to dispersal and also show greater environmental differences that might favor different species (Condit et al. 2002; Myers et al. 2013). In relation to the beta-diversity within each forest site, we expected contrasting patterns between juvenile and adult assemblages. A higher turnover of shadetolerant species in deforested landscapes is expected, whereas a lower tunorver of shadeintolerant on those fragments might occur due to floristic homogenization. Forest loss strongly affected juvenile and tree abundances (Benchimol et al. 2017), mainly the shade-tolerant species. Thus, we expected that source, dispersal, and recruitment limitation might be affecting shade-tolerant species in deforested landscapes and consequently decreasing species turnover on those fragments.

Materials and methods

STUDY AREA

This study was carried out in 20 forest fragments located in the southeastern Bahia State, Brazil (Fig. 1); a region originally covered by lowland tropical wet forest (Thomas et al. 1998). The dominant vegetation is tropical lowland wet forest and all remaining forest fragments have similar soil and topographic characteristics (Thomas et al. 1998). The regional climate according to the Koppen classification is hot and moist, without a distinct dry season (Gouvêa 1969). The average annual temperature in the region is 24 °C, and the mean annual rainfall is 1500 mm without defined seasonality (Mori et al. 1983).

Fig. 1 Map of the distribution of the study forest fragments in the southeastern Bahia State, Brazil.

STUDY SITES

We mapped the study areas using satellite images (QuickBird and WorldView, from 2011; and RapidEye, from 2009-2010). We created digital maps using GIS software by manually digitizing the land cover features visually interpreted at scale of 1:10,000, which is adequate for identifying patches based on the visual inspection of differences in color, texture, shape, location, and context. We delimited patches as polygons, following the typologies provided by IBGE (2006). After intensive ground-truthing, we developed a map of the land use of a 3,470 km² area showing the composition and spatial arrangement of all land-cover types in the region. Only old-growth and secondary forest patches were considered in our estimations of landscape forest cover (Fig. 1). Subsequently, we identified 58 potential sites and calculated the forest cover percentage within a 1km radius landscape from the center of each site. We selected this landscape size because previous studies at the same studies site identified 1000m was the scale of effect for forest structure (Rocha-Santos et al. 2016) and richness and abundance of trees (Rocha-Santos et al. 2017). We also used 1000m to avoid spatial overlap between landscapes, which is required to make accurate landscape-scale inferences (Eigenbrod et al. 2011). We calculated the Euclidian distance between the sites using the vegan package (Oksanen et al. 2018) on R software (R Core Team 2014). We grouped sites into forest cover classes and performed a stratified random sampling of 20 landscapes covering a wide variation of habitat amount (ranging from 5-99% of forest cover). For each study site, we also estimated the total length of forest edge (edge amount, hereafter) using the FRAGSTATS software (McGarigal et al. 2012). Before the analysis we evaluated the correlation between forest cover and edge amount and due to the low correlation between them (rho = 0.19) we kept both variables in the analysis.

ADULT AND JUVENILE ASSEMBLAGE SURVEY

In each study site, we placed 5 plots, randomly distributed at a minimum distance of 50 m from each other, whilst avoiding the forest edge (50 m). Adults (individuals with woody stems with DBH \geq 5 cm) were sampled in 25 x 4-m plots from February 2013 to July 2014. Juveniles (individuals with woody stem, heights \geq 1.3 m, and DBH \leq 5 cm) were sampled in 25 x 2-m plots from March to June 2013. We only considered the arboreal component presented in the juvenile stage. All individuals were collected and identified to the lowest possible taxonomic level with the aid of specific literature, expert knowledge of the local flora (see Amorim et al. 2008; Faria et al. 2009; Pardini et al. 2009), and comparisons with vouchers deposited in the following herbaria: Herbarium André Maurício V. de Carvalho, Centro de Pesquisas do Cacau (CEPEC / CEPLAC), Herbarium Universidade Estadual de Santa Cruz (HUESC), and Alexandre Leal Costa (ALCB) Herbarium. We also classified all the species according to the regeneration strategy in shade-tolerant or shade-intolerant (Whitmore 1989). The data were gathered from published literature (Barroso et al. 1999; Lorenzi 2002; Mariano-Neto 2004) and authors' previous experience with the species in the study region (for details see Benchimol et al. 2017).

MOLECULAR PHYLOGENY

We constructed a time-calibrated phylogeny of the plant community (20 sites including juveniles and adults) by estimating the continuous phylogenetic distance between the sampled species using Bayesian inference and Markov chain Monte Carlo (MCMC) methods (see Appendices S1 and S2 for more details of phylogeny construction methods). The phylogenetic tree was composed of 654 species recorded for the assemblage of adult and juvenile and two species as external group (Appendix S3).

DATA ANALYSES

Using the entropart package (Marcon and Herault 2018), we evaluated the accuracy of data surveys with the coverage estimator (\hat{C}_n) recommended by Chao and Jost (2012), which estimates the proportion of the total number of individuals in an assemblage that belong to the species represented in the sample. The data was reasonably accurate with our sampling effort, the sample coverage was 0.97 for juveniles and 0.90 for adults, considering the complete assemblage, whereas considering each forest site, sample completeness varied from 0.48 to 0.83 for adults and 0.58 to 0.92 to juveniles.

Patterns of β -diversity among forest sites were analysed with multiplicative diversity decompositions of Hill numbers: ${}^{q}D_{\beta} = {}^{q}D_{\gamma}/{}^{q}D_{\alpha}$, where ${}^{q}D_{\gamma}$ refers to the total (gamma) diversity, and ${}^{q}D_{\alpha}$ refers to the mean local (alpha) diversity within the study communities. ${}^{q}D_{\beta}$ is interpreted as the 'effective number of completely distinct communities', as it ranges between 1 (when all communities are identical) and N (i.e. the number of communities), when all communities are completely different from each other (Jost 2007). The formulae for ${}^{q}D_{\gamma}$ and ${}^{q}D_{a}$ are detailed elsewhere (Jost 2007; Tuomisto 2010). β -diversity is independent of species richness but depends on the parameter q, which determines the sensitivity of the measure to species' relative abundances (Jost 2007; Tuomisto 2010). We considered β -diversity of order 1 $({}^{1}D_{\beta})$ and 2 $({}^{2}D_{\beta})$. ${}^{0}D_{\beta}$ is not sensitive to species abundances and gives disproportionate weight to rare species. The Atlantic forest is a hotspot of diversity with high diversity and elevated number of endemic and rare plants (Martini et al. 2007; Myers et al. 2000). In addition, low sample coverage was also found in some forest sites, mainly in the juvenile assemblages. Thereofre, to avoid biased caused by sampling effort to detect rare species, we did not use this order. ${}^{1}D_{\beta}$ weights each species according to its abundance in the community, and measures the turnover of 'common' or 'typical' species in the community. ${}^{2}D_{\beta}$ favours very abundant species, and is therefore interpreted as the turnover of 'dominant' species in the community (Jost 2007; Tuomisto 2010). These two β -diversity measures were calculated using raw estimators with the

entropart package. We evaluated the β -diversity of order 1 and 2 between juvenile and adult plant assemblages separated by regeneration strategy for each sample site. More than the species diversity, we also calculated the same metrics including the phylogenetic relationship. This measure was derived to take into account both species abundances and species phylogenetic differences (Chao et al. 2010). The result is the mean effective number of species (or of maximally distinct lineages) from *T* time units ago to the present (Chao et al. 2010).

We used Mantel tests (with 10000 permutations) to assess whether the matrix of β -diversity among forest sites was correlated to site location (i.e. with the matrix of the geographical distances among sites) and to the matrices showing the differences among forest cover and edge amount. We performed an analysis of covariance (ANCOVA) to assess whether forest cover loss influence the patterns of β -diversity between juvenile and adult assemblages separated by regeneration strategy. This was calculated for both, taxonomic and phylogenetic β -diversity. To improve normality of the residuals, the phylogenetic β -diversity (${}^{1}D_{\beta}$ and ${}^{2}D_{\beta}$) was Box–Cox transformed (bcPower from car package) prior to the analyses, with optimal lambda value ($\lambda = -8.53$ to ${}^{1}D_{\beta}$ and $\lambda = -37.85$ to ${}^{2}D_{\beta}$) identified through the powerTransform function from the car package (Fox et al. 2018). All statistical analyses were carried out with R software, using vegan (Oksanen et al. 2018) and entropart (Marcon and Herault 2018) packages.

Results

β-DIVERSITY ACROSS THE GRADIENT OF FOREST LOSS

We recorded 5053 individuals of adult and juvenile plants belonging to 652 species. Adult trees comprise 1868 individuals and 456 species, of which 286 were classified as shade-tolerant and 170 as shade-intolerant. Juvenile assemblage presented 3185 individuals in 400 species, of which 249 were shade-tolerant and 103 shade-intolerant (for the remaining 48 no information was available). Our results showed that the β -taxonomic diversity was 14.2% higher in common adult species than juveniles, but the opposite for abundant species, with 2% higher in juveniles than adults (Fig. 2a). The phylo- β -diversity was very similar between adult and juvenile communities, showing a similar pattern with a slightly higher β -diversity in common than dominant species (Fig. 2b).

Fig. 2 Taxonomic (a) and phylogenetic (b) β -diversity in common (${}^{1}D_{\beta}$) and dominant species (${}^{2}D_{\beta}$) of adults and juveniles tree assemblages in southern Bahia, Brazil. The same indices for taxonomic (c) and phylogenetic (d) β -diversity separated by regeneration strategy (shade-tolerant and shade-tolerant).

Interestingly, when evaluating the regeneration strategy, we found that the taxonomic β -diversity of adults was very similar between shade-tolerant and shade-intolerant species (Fig. 2c). On the contrary, the taxonomic β -diversity of juvenile assemblage showed a higher β -

diversity of shade-tolerant than shade-intolerant species. In general, the β -diversity was higher considering the common species of adult and juveniles independent of the regeneration strategy, the only exception was the shade-tolerant juvenile assemblage (Fig. 2c). Comparing the ontogenetic stages, the β -diversity of common shade-intolerant species was 23% higher in adults than juveniles and almost 29% higher when considering dominant species. The β diversity of shade-tolerant common species was 14% higher in adult than juvenile and was 20% higher in juvenile than adult abundant species. The phylo- β -diversity was very similar between adult and juvenile assemblages within each regeneration strategy (Fig. 2d).

PREDICTORS OF PLANT β-DIVERSITY

In general, taxonomic β -diversity was strongly related to site location and forest cover amount. On the contrary, phylogenetic β -diversity, was only explained by geographical distance among forest sites (Table 1). All metrics of taxonomic β -diversity were related to the geographical distance among forest sites (Table 1), in which sites closely located had similar taxonomic β -diversity for the overall community in both ontogenetic stages.

Considering the adult assemblage, taxonomic β -diversity was related to forest cover, of common shade-tolerant and intolerant species. Considering the juvenile assemblage, forest cover was related to taxonomic β -diversity only for dominant and common shade-tolerant species. Taxonomic and phylogenetic β -diversity were not related to the edge amount independently of the ontogenetic stage or regeneration strategy (Table 1).

Table 1 Correlation between taxonomic and phylogenetic β -diversity of juveniles and adults plants among forest sites and site location (geographical distance among sampled sites) and inter-site differences (Δ – forest cover and edge amount) in landscapes with different forest cover in southern Bahia, Brazil. We considered two orders of q (2 and 3), which determine the sensitivity of each β -diversity component to species abundances.

Ontogenetic		β-diversity	Site location	Δ Forest cover	Δ edge amount
stage/Diversity		component			
Juveniles plants					
Taxonomic					
	Community	${}^{1}\mathbf{D}_{\beta}$	0.43*	0.43*	0.27
	Community	$^{2}\mathbf{D}_{\beta}$	0.40*	0.41*	0.28
	Tolerant	${}^{1}\mathbf{D}_{\beta}$	0.35*	0.42*	0.24
	Tolerant	$^{2}\mathbf{D}_{\beta}$	0.37*	0.40*	0.16
	Intolerant	${}^{1}\mathbf{D}_{\beta}$	0.32*	0.23	0.20
	Intolerant	$^{2}\mathbf{D}_{\beta}$	0.26	0.23	0.27
Phylogenetic					
	Community	${}^{1}\mathbf{D}_{\beta}$	0.26*	0.30	0.30
	Community	$^{2}D_{\beta}$	0.13	0.12	0.16
	Tolerant	${}^{1}\mathbf{D}_{\beta}$	0.15	0.28	0.24
	Tolerant	$^{2}\mathbf{D}_{\beta}$	0.06	0.13	0.12
	Intolerant	${}^{1}\mathbf{D}_{\beta}$	0.29	0.13	0.18
	Intolerant	$^{2}\mathbf{D}_{\beta}$	0.16	0.09	0.23
Adult plants					
Taxonomic					
	Community	$^{1}\mathbf{D}_{\mathbf{eta}}$	0.44*	0.39*	0.33
	Community	$^{2}D_{\beta}$	0.35*	0.32*	0.27
	Tolerant	${}^{1}\mathbf{D}_{\beta}$	0.31*	0.32*	0.23
	Tolerant	$^{2}D_{\beta}$	0.26*	0.26	0.21
	Intolerant	${}^{1}\mathbf{D}_{\beta}$	0.38*	0.33*	0.31
	Intolerant	$^{2}D_{\beta}$	0.29*	0.30	0.27
Phylogenetic					
	Community	${}^{1}\mathbf{D}_{\beta}$	0.35*	0.30	0.23
	Community	$^{2}D_{\beta}$	0.20*	0.17	-0.03
	Tolerant	${}^{1}\mathbf{D}_{\beta}$	0.14	0.21	0.32
	Tolerant	$^{2}D_{\beta}$	0.08	0.14	0.18
	Intolerant	$^{1}\mathbf{D}_{\mathbf{\beta}}$	0.33*	0.19	0.04
	Intolerant	$^{2}D_{\beta}$	0.19	0.10	-0.10

We indicate the correlation coefficients calculated with Mantel tests with 10,000 permutations.

Significant coefficients are indicated with asterisks (Bonferroni adjusted alpha value of 0.002^*).

β -DIVERSITY BETWEEN JUVENILE AND ADULT ASSEMBLAGES

We found that β -diversity between juvenile and adult trees was different for shadetolerant and shade-intolerant species, independent of the q order (Table 2; Fig. 3). The taxonomic turnover between adults and juveniles in each sample site was very high, specially considering intolerant species (Fig. 3a and b). The taxonomic and phylogenetic β -diversity based on common and dominant species was higher in shade-intolerant than shade-tolerant species (Fig. 3). There was no interaction between the regeneration strategy and forest cover amount. Only the phylogenetic β -diversity between juveniles and adults was affected by forest loss in both orders of q and in both regeneration strategies (Table 2).

Fig. 3 Relationship between forest cover and taxonomic (a e b) and phylogenetic (c e d) β diversity between adults and juveniles shade-tolerant and shade-intolerant in common (${}^{1}D_{\beta}$) and dominant species (${}^{2}D_{\beta}$) of tree assemblages in southern Bahia, Brazil. The red circles and lines are the shade-intolerant and the blue circles and lines represents the shade-tolerant.

Table 2 Summary of the Analysis of Covariance (ANCOVA) on taxonomic and phylogenetic β -diversity between juveniles and adults tree of common and dominant species, shade-tolerant and shade-intolerant and forest cover. The values of phylogenetic β -diversity component were Box-Cox transformed prior to the analyses. P-values in bold are significant at the P = 0.05 level.

β-diversity component		DF	MS	F	Р
Taxonomic ¹ D _β	Forest cover	1	0.002	0.41	0.52
	Shade-tolerance	1	1	189.1	<0.001
	Interaction term	1	0.006	1.17	0.29
	Error	36	0.005		
Taxonomic ² D _β	Forest cover	1	0	0	1
	Shade-tolerance	1	1.78	132.04	<0.001
	Interaction term	1	0	0	0.99
	Error	36	0.01		
Phylogenetic ¹ D _β	Forest cover	1	0.002	13.69	<0.001
	Shade-tolerance	1	0.01	82.09	<0.001
	Interaction term	1	0	1.27	0.27
	Error	36	0		
Phylogenetic ${}^{2}D_{\beta}$	Forest cover	1	0	7.49	0.009
	Shade-tolerance	1	0.01	71.8	<0.001

Interaction term	1	0	0.01	0.91
Error	36	0		

Note: DF- Degrees of freedom; MS- Variance Estimate (Mean Square).

Discussion

Our study on β -diversity in anthropogenic landscapes in the southern Bahia highlighted some dissimilar patterns between juvenile and adult assemblages. Our results showed a slighty higher β -taxonomic diversity in adult than juvenile communities, considering common species, across the gradient of forest loss. Moreover, the phylo- β -diversity was very similar between the two ontogenetic stages. Furthermore, we found that whereas the taxonomic β -diversity between juvenile and adults within each forest fragment, forest loss favours the regeneration of less related lineages (i.e. lineage divergence among juveniles and trees), increasing the phylogenetic turnover between tree and juvenile assemblages. The lineages of recruiting species in the more deforested landscapes were different from those present in the adult community, leading to a shift in the natural communities. We reinforce the importance of the evaluation of the turnover between the ontogenetic stages, which is a good proxy of recruitment and might enable a better comprehension of the future of the tree assemblages in these anthropogenic landscapes.

β-DIVERSITY ACROSS FOREST FRAGMENTS

The β -taxonomic diversity of adult assemblages was slightly higher than juvenile, however it was more pronounced when the regeneration strategies were evaluated. In adult assemblages, the taxonomic β -diversity was very similar between shade-tolerant and shadeintolerant species. On the contrary, the taxonomic β -diversity of juvenile assemblage showed a higher β -diversity of shade-tolerant than shade-intolerant species. This might indicate a tendency of increasing differentiation on shade-tolerant community in future generations. Differentiation patterns were also found in highly fragmented landscapes (Arroyo-Rodriguez et al. 2013). However, because we evaluated more than one ontogenetic stage and separated by regeneration strategy, we are able to suggest that this pattern is becoming more accentuated in the next generation. Therefore, forest loss affects the turnover of shade-tolerant species with delayed responses, and mainly for the dominant species. As predicted, habitat destruction might produce time-delayed responses in forest remnants (Tilman et al. 1994).

Moreover, the phylo-β-diversity across forest sites was very similar between the ontogenetic stages. The regeneration strategies also showed similar patterns of phylo-β-diversity between juveniles and adults. Consequently, the lineage turnover across forest sites was low between juvenile and adults, however, the regeneration strategy was a key component. A higher turnover of shade-intolerant than shade-tolerant lineages across the forest cover gradient was observed. We suggest, that this is due to the increasing representativeness of pioneer species in modified landscapes subjected to structural (Chave et al. 2006; Rocha-Santos et al. 2016) and microclimatic changes (Laurance et al. 2006; Santos et al. 2008; Bongers et al. 2009). Possibly, due to the rapid growth rates, these species would already be presented in the adult community in deforested landscapes. It is worth noting, that our study did not evaluate rare species, which are highly represented among the shade-tolerant species and consequently, this pattern would be different for these lineages.

The β -diversity pattern between forest sites was strongly related to geographic distances. Site location was the best predictor of taxonomic and phylogenetic β -diversity, indicating that nearby forest sites showed similar species turnover. This pattern was also found in previous studies, including studies on tree (Arroyo-Rodríguez et al. 2013), and bird (Morante-Filho et al. 2016) communities in tropical forests. Otherwise, the phylogenetic β -diversity was weakly related to spatial distance in previous studies (Swenson 2011). Our findings highlighted that close located fragments might favour seed dispersal and may also present similar abiotic conditions contributing to similar species composition and lineages. On the other hand, forest cover was a good predictor only for taxonomic β -diversity across the fragments. A low turnover of species in fragments surrounded by similar forest cover amount, might occur because they are subject to similar limitation processes driven by forest loss, such as, species extinction of important seed dispersers (Galetti et al. 1997; Chiarello 1999; Cullen et al. 2000), and microclimatic changes that affect plant recruitment (Murcia 1995; Turton and Freiburger 1997). On the contrary, egde amount was a weakly predictor of beta-diversity. Several studies suggested that edge effects shape tree communities (Matlack 1993; Laurance et al. 2007; Santos et al. 2012), including reducing the phylogenetic diversity on edges (Matos et al. 2017). In general, landscape composition and configuration can influence biodiversity (Fahrig 2003; Fahrig et al. 2011). Our results indicate that the beta component of diversity seems to be more influenced by landscape composition (i.e. forest cover) than by configuration (i.e. edge effect).

β-DIVERSITY WITHIN FOREST FRAGMENTS

Species and lineages turnover between juvenile and adult trees within each forest fragment showed markedly differences in shade-tolerant and shade-intolerant species, independently of the q order. Our results highlight that the taxonomic turnover in each sample site was very high, specially for intolerant species, in which the juvenile assemblage was represented by a highly different compositional community comparing to adult assemblages. We suggest that a strong recruitment limitation in shade-intolerant species is occurring independent of the forest cover amount. Shade-intolerant species or pioneer species may respond differently to disturbances and the representativeness of those species may vary depending on whether they are short or long lived pioneer species (Santos et al. 2012). Longlived pioneer species (emergent species) exhibited a negative recruitment, on the contrary, a positive net recruitment was experienced by the short- lived pioneer (Santos et al. 2012). This can explain the dissimilarity of shade-intolerant species detected in our study between the juvenile and adult assemblages. But also, two different mechanisms might explain the recruitment limitation of intolerant species and operate differently according to the landscapes contexts. In forested landscapes the recruitment of shade-intolerant species is strongly dependent of very specific conditions such as gap formation (Whitmore 1989). On the other hand, in the deforested areas, more favorable microclimatic conditions to pioneers might be present. However, competition due to the production and arrival of many different propagules may contribute to recruitment limitation and dissimilarity between the juvenile and adult communities.

It is interesting to note, that only the phylo- β -diversity was affected by forest loss. Even though a high turnover of species was recorded in all forest fragments, a lower turnover occurred in the most forested landscapes, probably to the presence of co-generic species recruiting. According to Swenson (2011), the turnover of congeners along an environmental gradient would be considered a low phylogenetic turnover, but a high species turnover, explaining the high taxonomic beta diversity found on those fragments.

Conclusion

To conclude, our results highlight that lineage turnover was not high between forest sites, although some species substitution occurred across the different landscapes. Within each forest site, forest loss favours the regeneration of distant relatives, causing a high lineage turnover between tree assemblages of juvenile and adults. Although taxonomic β -diversity between juvenile and adults was high and occurring similarly across the gradient of forest cover, the lineages of recruiting species in the more deforested landscapes were different from those present in the adult community, leading to a shift in the natural communities in these environments with a delayed response. In this way, forest loss might be driving changes in species recruitment, culminating in a future community with a different evolutionary heritage in relation to original communities in forested landscapes.

Acknowledgments

We thank the financial support to the project provided by Conselho Nacional de Desenvolvimento Científico e Técnologico (CNPq; grant number 69014416) and Universidade Estadual de Santa Cruz (grant number 002011001171). ERA's PhD studentship was funded by the CAPES and CNPq (sandwich).

References

- Amorim AM, Thomas WW, Carvalho AMV, Jardim JG (2008) Floristic of the Una Biological Reserve, Bahia, Brazil. In: The Atlantic Coastal Forests of Northeastern Brazil (W.W. Thomas, ed.). Memoirs of the New York Botanical Garden 100:67-146.
- Andrade ER, Jardim JG, Santos BA, et al (2015) Effects of habitat loss on taxonomic and phylogenetic diversity of understory Rubiaceae in Atlantic forest landscapes. For Ecol Manage 349:73–84. doi: 10.1016/j.foreco.2015.03.049
- Arroyo-Rodríguez V, Rös M, Escobar F, et al (2013) Plant β-diversity in fragmented rain forests: testing floristic homogenization and differentiation hypotheses. J Ecol 101:1449– 1458. doi: 10.1111/1365-2745.12153
- Barroso GM, Morim MP, Peixoto AL, Ichaso CLF (1999) Frutos e sementes: morfologia aplicada à sistemática de dicotiledôneas. Universidade Federal de Viçosa, Viçosa.
- Bell CD, Soltis DE, Soltis PS (2010) The age and diversification of the angiosperms rerevisited. Am J Bot 97:1296–303. doi: 10.3732/ajb.0900346
- Benchimol M, Mariano-Neto E, Faria D, et al (2017) Translating plant community responses to habitat loss into conservation practices: Forest cover matters. Biol Conserv 209:499– 507. doi: 10.1016/j.biocon.2017.03.024
- Bongers F, Poorter L, Hawthorne WD, Sheil D (2009) The intermediate disturbance hypothesis applies to tropical forests, but disturbance contributes little to tree diversity. Ecol Lett 12:798–805. doi: 10.1111/j.1461-0248.2009.01329.x
- Burns J, Strauss S (2012) Effects of competition on phylogenetic signal and phenotypic plasticity in plant functional traits. Ecology 93:126–137

Cadotte MW, Cardinale BJ, Oakley TH (2008) Evolutionary history and the effect of

biodiversity on plant productivity. Proc Natl Acad Sci 105:17012–17017. doi: 10.1073/pnas.0805962105

- Cadotte MW, Cavender-Bares J, Tilman D, Oakley TH (2009) Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS One 4:e5695. doi: 10.1371/journal.pone.0005695
- Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12:693–715. doi: 10.1111/j.1461-0248.2009.01314.x
- Chao A, Chiu C-H, Jost L (2010) Phylogenetic diversity measures based on Hill numbers. Philos Trans R Soc Lond B Biol Sci 365:3599–609. doi: 10.1098/rstb.2010.0272
- Chao A, Jost L (2012) Coverage-based rarefaction and extrapolation: Standardizing samples by completeness rather than size. Ecology 93:2533–2547. doi: 10.1890/11-1952.1
- Chave J, Muller-Landau HC, Baker TR, et al (2006) Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecol Appl 16:2356–2367
- Chiarello AG (1999) Effects of fragmentation of the Atlantic forest on mammal communities in south-eastern Brazil. Biol Conserv 89:71–82. doi: 10.1016/S0006-3207(98)00130-X
- Condit R, Pitman N, Leigh EG, et al (2002) Beta-diversity in tropical forest trees. Science (80-) 295:666–669. doi: 10.1126/science.1066854
- Cullen L, Bodmer RE, Valladares Pádua C (2000) Effects of hunting in habitat fragments of the Atlantic forests, Brazil. Biol Conserv 95:49–56. doi: 10.1016/S0006-3207(00)00011-2
- Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973. doi: 10.1093/molbev/mss075
- Eigenbrod F, Hecnar SJ, Fahrig L (2011) Sub-optimal study design has major impacts on landscape-scale inference. Biol Conserv 144:298–305. doi: 10.1016/j.biocon.2010.09.007
- Ellis EC, Kaplan JO, Fuller DQ, et al (2013) Used planet: A global history. Proc Natl Acad Sci 110:7978–7985. doi: 10.1073/pnas.1217241110
- Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515. doi: 10.1146/annurev.ecolsys.34.011802.132419

- Fahrig L, Baudry J, Brotons L, et al (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14:101–112. doi: 10.1111/j.1461-0248.2010.01559.x
- Faria D, Mariano-Neto E, Martini A (2009) Forest structure in a mosaic of rainforest sites: the effect of fragmentation and recovery after clear cut. For Ecol Manage 257:2226–2234. doi: 10.1016/j.foreco.2009.02.032
- Flohre A, Fischer C, Aavik T, et al (2011) Agricultural intensification and biodiversity partitioning in European landscapes comparing plants, carabids, and birds. Ecol Appl 21:1772–1781. doi: 10.1890/10-0645.1
- Fontúrbel FE, Candia AB, Malebrán J, et al (2015) Meta-analysis of anthropogenic habitat disturbance effects on animal-mediated seed dispersal. Glob Chang Biol 21:3951–60. doi: 10.1111/gcb.13025
- Fox J, Weisberg S, Price B, et al (2018) car: Companion to Applied Regression. R package version 3.0-0. Available: https://cran.r-project.org/web/packages/car/car.pdf
- Freitas CG, Dambros C, Camargo JLC (2013) Changes in seed rain across Atlantic Forest fragments in Northeast Brazil. Acta Oecologica 53:49–55. doi: 10.1016/j.actao.2013.08.005
- Galetti M, Martuscelli P, Olmos F, Aleixo A (1997) Ecology and conservation of the jacutinga Pipile jacutinga in the Atlantic Forest of Brazil. Biol Conserv 82:31–39. doi: 10.1016/S0006-3207(97)00004-9
- Gardner T a., Barlow J, Chazdon R, et al (2009) Prospects for tropical forest biodiversity in a human-modified world. Ecol Lett 12:561–582. doi: 10.1111/j.1461-0248.2009.01294.x
- Gouvêa JBS (1969) Contribuição à geomorfologia do sul da Bahia. Área dos baixos cursos dos rios Pardo e Jequitinhonha. Comunicação Técnica do Centro de Pesquisas do Cacau / Comissão Executiva de Planejamento da Lavoura Cacaueira, Itabuna, BA 35:1-11.
- Graham CH, Fine PVA (2008) Phylogenetic beta diversity: Linking ecological and evolutionary processes across space in time. Ecol Lett 11:1265–1277. doi: 10.1111/j.1461-0248.2008.01256.x
- Hubbell SP (2001) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton.

- IBGE, Instituto Brasileiro de Geografia e Estatística (2006) Manual Técnico de Uso da Terra. Diretoria de Geociências, Coordenação de Recursos Naturais e Estudos Ambientais, Rio de Janeiro
- Jost L (2007) Partitioning diversity into independent alpha and beta components. Ecology 88:2427–2439
- Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Mentjies P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649.
- Karp DS, Rominger AJ, Zook J, et al (2012) Intensive agriculture erodes β-diversity at large scales. Ecol Lett 15:963–970. doi: 10.1111/j.1461-0248.2012.01815.x
- Laurance WF, Nascimento HEM, Laurance SG, et al (2006) Rapid decay of tree-community composition in Amazonian forest fragments. Proc Natl Acad Sci U S A 103:19010–4. doi: 10.1073/pnas.0609048103
- Laurance WF, Nascimento HEM, Laurance SG, et al (2007) Habitat fragmentation, variable edge effects, and the landscape-divergence hypothesis. PLoS One 2:e1017. doi: 10.1371/journal.pone.0001017
- Laurance WF, Sayer J, Cassman KG (2014) Agricultural expansion and its impacts on tropical nature. Trends Ecol Evol 29:107–116. doi: 10.1016/j.tree.2013.12.001
- Lorenzi H (2002) Árvores brasileiras: Manual de identificação e cultivo deplantas arbóreas do Brasil, 4ª ed. Vol. 1 Editora Instituto Plantarum, Nova Odessa, São Paulo.
- MacArthur RH, Diamond JM, Karr JR (1972) Density Compensation in Island Faunas. Ecology 53:330–342
- Malhi Y, Gardner TA, Goldsmith GR, et al (2014) Tropical Forests in the Anthropocene. Annu Rev Environ Resour 39:125–159. doi: 10.1146/annurev-environ-030713-155141
- Marcon E, Herault B (2018) entropart: Entropy partitioning to measure diversity. R package version 1.5-3. Available: https://cran.r-project.org/web/packages/entropart/entropart.pdf
- Mariano-Neto E (2004) Efeitos da fragmentação sobre comunidades arbustivo-arbóreas em Mata Atlântica, Una BA. PhD dissertation, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil.

- Martini A, Fiaschi P, Amorim AM, Paixao JL (2007) A hot-point within a hot-spot: a high diversity site in Brazil's Atlantic Forest. Biodivers Conserv 16:3111–3128. doi: 10.1007/s10531-007-9166-6
- Matlack GR (1993) Microenvironment variation within and among forest edge sites in the eastern United States. Biol Conserv 66:185–194
- Matos FAR, Magnago LFS, Gastauer M, et al (2017) Effects of landscape configuration and composition on phylogenetic diversity of trees in a highly fragmented tropical forest. J Ecol 105:265–276. doi: 10.1111/1365-2745.12661
- McConkey KR, O'Farrill G (2016) Loss of seed dispersal before the loss of seed dispersers. Biol Conserv 201:38–49. doi: 10.1016/j.biocon.2016.06.024
- McGarigal K, Cushman SA, Ene E (2012) FRAGSTATS: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer software program produced by the authors at the University of Massachusetts. Available: http://www.umass.edu/landeco/research/fragstats/fragstats.html.
- Melo FPL, Arroyo-Rodríguez V, Fahrig L, et al (2013) On the hope for biodiversity-friendly tropical landscapes. Trends Ecol Evol 28:462–8. doi: 10.1016/j.tree.2013.01.001
- Metzger JP, Martensen AC, Dixo M, et al (2009) Time-lag in biological responses to landscape changes in a highly dynamic Atlantic forest region. Biol Conserv 142:1166–1177. doi: 10.1016/j.biocon.2009.01.033
- Morante-Filho JC, Arroyo-Rodríguez V, Faria D (2016) Patterns and predictors of β-diversity in the fragmented Brazilian Atlantic forest: a multiscale analysis of forest specialist and generalist birds. J Anim Ecol 85:240–50. doi: 10.1111/1365-2656.12448
- Moreno CE, Calderón-Patrón JM, Arroyo-Rodríguez V, et al (2017) Measuring biodiversity in the Anthropocene: a simple guide to helpful methods. Biodivers Conserv 26:2993–2998. doi: 10.1007/s10531-017-1401-1
- Mori S, Boom B, Carvalho A, Santos T (1983) Southern Bahian moist forests. Bot Rev 49:155– 232
- Mouquet N, Devictor V, Meynard CN, et al (2012) Ecophylogenetics: Advances and perspectives. Biol Rev 87:769–785. doi: 10.1111/j.1469-185X.2012.00224.x
- Murcia C (1995). Edge effects in fragmented forests: Implications for conservation. Trends in

Ecology and Evolution 10: 58-62.

- Myers JA, Chase JM, Jiménez I, et al (2013) Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecol Lett 16:151–157. doi: 10.1111/ele.12021
- Myers N, Mittermeier R, Mittermeier C, et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858
- Oksanen J, Blanchet FG, Friendly M, et al. (2018) vegan: Community Ecology Package. R package version 2.5-2. Available: https://cran.rproject.org/web/packages/vegan/vegan.pdf
- Orihuela RLL, Peres CA, Mendes G, et al (2015) Markedly divergent tree assemblage responses to tropical forest loss and fragmentation across a strong seasonality gradient. PLoS One 10:1–19. doi: 10.1371/journal.pone.0136018
- Pardini R, Bueno ADA, Gardner T, et al (2010) Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLoS One 5:e13666. doi: 10.1371/journal.pone.0013666
- Pardini R, Faria D, Accacio GM, et al (2009) The challenge of maintaining Atlantic forest biodiversity: A multi-taxa conservation assessment of specialist and generalist species in an agro-forestry mosaic in southern Bahia. Biol Conserv 142:1178–1190. doi: 10.1016/j.biocon.2009.02.010
- Pessoa MS, Hambuckers A, Benchimol M, et al (2017) Deforestation drives functional diversity and fruit quality changes in a tropical tree assemblage. Perspect Plant Ecol Evol Syst 28:78–86. doi: 10.1016/j.ppees.2017.09.001
- Price MN, Dehal PS, Arkin AP (2010) FastTree 2 Approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490. doi: 10.1371/journal.pone.0009490
- Purvis A (2008) Phylogenetic Approaches to the study of extinction. Annu Rev Ecol Evol Syst 39:301–319. doi: 10.1146/annurev
- R Core Team (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
- Rigueira DMG, Rocha PLB, Mariano-Neto E (2013) Forest cover, extinction thresholds and time lags in woody plants (Myrtaceae) in the Brazilian Atlantic Forest: resources for
conservation. Biodivers Conserv 22:3141-3163. doi: 10.1007/s10531-013-0575-4

- Rocha-santos L, Benchimol M, Mayfield MM, et al (2017) Functional decay in tree community within tropical fragmented landscapes : Effects of landscape-scale forest cover. PLoS One 12:e0175545. doi: 10.1371/journal.pone.0175545
- Rocha-Santos L, Pessoa MS, Cassano CR, et al (2016) The shrinkage of a forest: Landscape-scale deforestation leading to overall changes in local forest structure. Biol Conserv 196:1–9. doi: 10.1016/j.biocon.2016.01.028
- Santos BA, Peres CA, Oliveira MA, et al (2008) Drastic erosion in functional attributes of tree assemblages in Atlantic forest fragments of northeastern Brazil. Biol Conserv 141:249– 260. doi: 10.1016/j.biocon.2007.09.018
- Santos GGA, Santos BA, Nascimento HEM, Tabarelli M (2012) Contrasting Demographic Structure of Short- and Long-lived Pioneer Tree Species on Amazonian Forest Edges. Biotropica 44:1–8
- Swenson NG (2011) Phylogenetic beta diversity metrics, trait evolution and inferring the functional beta diversity of communities. PLoS One 6:. doi: 10.1371/journal.pone.0021264
- Tabarelli M, Mantovani W, Peres C (1999) Effects of habitat fragmentation on plant guild structure in the montane Atlantic forest of southeastern Brazil. Biol Conserv 91:119–127
- Tabarelli M, Peres CA, Melo FPL (2012) The ' few winners and many losers ' paradigm revisited : Emerging prospects for tropical forest biodiversity. Biol Conserv 155:136–140
- Thomas WMW, Carvalho A, Amorim A, et al (1998) Plant endemism in two forests in southern Bahia , Brazil. Biodivers Conserv 7:311–322
- Thompson PL, Rayfield B, Gonzalez A (2017) Loss of habitat and connectivity erodes species diversity, ecosystem functioning, and stability in metacommunity networks. Ecography 40:98–108. doi: 10.1111/ecog.02537
- Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat destruction and the extinction debt. Nature 371:65–66
- Tucker CM, Cadotte MW, Carvalho SB, et al (2017) A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol Rev 92:698–715. doi: 10.1111/brv.12252

- Tuomisto H (2010) A diversity of beta diversities: straightening up a concept gone awry. Part
 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33: 2-22.
- Turton SM, Freiburger HJ (1997). Edge and aspect effects on the microclimate of a small Tropical forest remnant on the Atherthon Tableland Northeastern Australia. In: Laurance WF, Bierregaard Jr. RO (eds) Tropical Forest Remnants: Ecology, management, and Conservation of fragmented communities. The University of Chicago press, Chicago & London, pp 45-54.
- Turner IM, Corlett RT (1996). The conservation value of small, isolated fragments of lowland tropical rain forest. Tree 11(8): 330-333.
- Vellend M, Verheyen K, Jacquemyn H, et al (2006) Extinction debt of forest plants persists for more than a centuary following habitat fragmentation. Ecology 87:542–548. doi: 10.1890/05-1182
- Whitmore TC (1989) Canopy Gaps and the Two Major Groups of Forest Trees. Ecology 70:536–538
- Whittaker RJ, Willis KJ, Field R (2001) Scale and species richness : towards a general , theory of species diversity hierarchical. J Biogeogr 28:453–470. doi: 10.1046/j.1365-2699.2001.00563.x

Appendix S1. Details of molecular phylogenetic tree construction

We constructed a molecular phylogenetic tree of the plant community (20 sites including juveniles and adults). The phylogenetic tree was composed of 654 species recorded for the assemblage of adult and juvenile and two species as external group. We excluded 33 species that have identification only up to family level. Initially we searched for three DNA loci, two plastids [ribulose-bisphosphate carboxylase gene (*rbcL*) and maturase K (*matK*)] and one nuclear [5.8S ribosomal RNA gene] from sequences available on GenBank (see Appendix S2). When no sequences were available for a species, we randomly chose species within the same genus to estimate the relationship to that genus (see Appendix S2). We expected that the effect on branching length of the use of these substitutions are minimal due to the breadth of phylogenetic sampling (Cadotte et al. 2008, 2009). In this step, 51 species were excluded because we did not find genus sequences available in GenBank. We used *Amborella trichocarpa* and *Magnolia virginiana* to root the tree and increase the sampling of basal strains in our phylogeny (Burns and Strauss 2011).

The sequences were aligned for each region independently and then combined into a single supermatrix using Geneious version 7.1.4 (Kearse et al. 2012). The Maximum Likelihood analysis was performed using FastTree 2 (Price et al. 2010), allowing the general time reversible $(GTR) + \gamma$ model to be estimated, and using the default settings. Multiple runs were performed to ensure that the resulting phylogeny was not stuck on a local optimum.

Then, a molecular clock analysis was performed, adopting calibration points of fossils derived from Bell et al. (2010) and using the software BEAST v1.8.2 (Drummond et al. 2012). The calibration points (Bell et al. 2010) used were: I Gentianales (54-78 MY), II Malphighiales (88-97 MY) and III Fabaceae (49-77 MY). Simultaneous divergence time and phylogenetic analyzes were conducted using MCMC methods implemented in BEAST v1.8.2, which employs a relaxed clock lognormal model to estimate divergence times.

Appendix S2. Table of sequences used to estimate the molecular tree

Sequences used to estimate the Bayesian tree (Appendix S3) for plant species founded in 20 sites located in the southeastern Bahia State, Brazil. The Bayesian tree was estimated based in three DNA regions: maturase K (matK), 5.8S ribosomal RNA gene (5.8S), and ribulose-1,5-carboxylase/bisphosphate gene (rbcL). Data from sequences available in GenBank (http://www.ncbi.nlm.nih.gov/genbank/).

Species	Species used for matK	matK	Species used for 5.8S	5.88 Species used for rb		rbcL
Abarema turbinata	Abarema brachystachya	KF981314.1	Abarema floribunda	JX870654.1	Abarema brachystachya	KF981223.1
Actinostemon appendiculatus	Actinostemon concolor	AB233779.1	NA	NA	Actinostemon concolor	AB233883.1
Actinostemon sp2	NA	NA	NA	NA	Actinostemon amazonicus	AY794861.1
Actinostemon sp3	NA	NA	NA	NA	NA	NA
Actinostemon verticillatus	NA	NA	NA	NA	Actinostemon caribaeus	AY794863.1
Adenophaedra megalophylla	NA	NA	NA	NA	Adenophaedra grandifolia	AY794930.1
Aegiphila sp1	Aegiphila panamensis	JQ588060.1	Aegiphila monstrosa	DQ070729.1	Aegiphila panamensis	GQ981656.1
Aeschynomene sensitive	Aeschynomene rudis	AF270869.1	Aeschynomene sensitiva	FM242614.1	Aeschynomene indica	AF308701.1
Albizia pedicellaris	Balizia pedicellaris	KF981315.1	Balizia pedicellaris	JX870657.1	Balizia pedicellaris	JQ625907.1
Albizia sp2	Albizia julibrissin	AY386855.1	Albizia julibrissin	FJ572041.1	Albizia julibrissin	Z70147.1
Alchornea glandulosa	Alchornea floribunda	LK021374.1	Alchornea trewioides	KP092919.1	Alchornea trewioides	GU441783.1

Alchornea triplinervia	Alchornea latifolia	LK021375.1	NA	NA	Alchornea triplinervia	KF981217.1
Algernonia leandrii	NA	NA	NA	NA	NA	NA
Allagoptera caudescens	Allagoptera arenaria	AM114635.1	NA	NA	Allagoptera arenaria	AY044631.1
Allophylus edulis	Allophylus sp.	AY724269.1	Allophylus sp.	JN190972.1	Allophylus sp.	AM235128.1
Allophylus sericeus	Allophylus natalensis	AY724268.1	Allophylus spicatus	JN190973.1	Allophylus spicatus	JN191141.1
Allophylus sp1	Allophylus arboreus	EU720665.1	Allophylus arboreus	EU720531.1	Allophylus javensis	AY724343.1
Almeidea coerulea	NA	NA	NA	NA	NA	NA
Alseis floribunda	Alseis floribunda	FJ905330.1	Alseis floribunda	FJ984954.1	Alseis blackiana	GQ981659.1
Alseis latifolia	Alseis peruviana	FJ905332.1	Alseis peruviana	FJ984956.1	NA	NA
Alseis sp1	Alseis lugonis	FJ905331.1	Alseis lugonis	FJ984955.1	Alseis lugonis	Y18709.1
Amaioua guianensis	NA	NA	NA	NA	Amaioua guianensis	AM117202.1
Amaioua sp1	Amaioua corymbosa	GQ981931.1	NA	NA	Amaioua corymbosa	JQ626322.1

Andira anthelmia	Andira inermis	JF501102.1	Andira taurotesticulata	FJ542804.1	Andira anthelmia	KF981224.1
Andira fraxinifolia	Andira marauensis	JX295899.1	Andira fraxinifolia	FJ542770.1	Andira inermis	U74199.1
Andira legalis	Andira legalis	JX295893.1	Andira legalis	FJ542787.1	NA	NA
Andira marauensis	NA	NA	Andira nitida	FJ542797.1	NA	NA
Andira sp1	NA	NA	Andira carvalhoi	FJ542766.1	Andira surinamensis	JQ625880.1
Andira sp2	NA	NA	NA	NA	Andira aubletii	AY904389.1
Andira sp3	NA	NA	Andira ormosioides	FJ542798.1	NA	NA
Andira sp4	Andira humilis	JX295960.1	Andira humilis	FJ542774.1	NA	NA
Andira lewisii	NA	NA	NA	NA	NA	NA
Aniba intermedia	Aniba affinis	AJ247145.2	Aniba cinnamomiflora	AF272254.1	Aniba panurensis	JQ625872.2
Annona glabra	Annona glabra	DQ125050.1	NA	NA	Annona glabra	AY841596.1

Annona cacans	Annona cherimola	KM068848.1	NA	NA	Annona cherimola	JX571777.1
Annona leptopetala	Annona sclerophylla	GQ139718.1	NA	NA	Annona deceptrix	AY841595.1
Annona muricata	Annona muricata	AF543722.1	NA	NA	Annona muricata	AY743440.1
Annona neolaurifolia	Annona squamosa	EU715064.1	NA	NA	Annona squamosa	EU420865.1
Annona salzmannii	Annona dumetorum	GQ139704.1	NA	NA	NA	NA
Annona sp1	NA	NA	NA	NA	NA	NA
Annona sp2	Annona purpurea	KM068866.1	NA	NA	Annona senegalensis	AY841597.1
Annona sylvatica	Annona prevostiae	JQ626342.1	NA	NA	Annona prevostiae	JQ625732.1
Aparisthmium cordatum	Aparisthmium cordatum	KF981312.1	NA	NA	Aparisthmium cordatum	AY794955.1
Apeiba albiflora	Apeiba petoumo	JQ626394.1	NA	NA	Apeiba petoumo	JQ625941.1
Apeiba tibourbou	Apeiba tibourbou	JQ589326.1	NA	NA	Apeiba tibourbou	AJ233145.1
Aptandra sp1	NA	NA	NA	NA	NA	NA

Aptandro tubicina	a Aptandra tubicina	DQ790178.1	NA	NA	Aptandra tubicina	DQ790141.1
Arapatiel Emargina	la NA ta	NA	NA	NA	Arapatiella emarginata	AY904376.1
Arapatiel psilophyl	la Arapatiella la psilophylla	EU361859.1	NA	NA	NA	NA
Artocarpt heterophyl	ıs Artocarpus lus altilis	KJ767846.1	Artocarpus heterophyllus	KT002551.1	Artocarpus heterophyllus	JX856635.1
Aspidosper discolor	ma Aspidosperma marcgravianum	FJ514763.1	Aspidosperma marcgravianum	FJ037793.1	Aspidosperma marcgravianum	JQ626187.1
Aspidosper illustre	ma Aspidosperma australe	DQ660502.1	NA	NA	Aspidosperma australe	DQ660632.1
Aspidosper parvifoliu	ma Aspidosperma m cylindrocarpon	DQ660503.1	Aspidosperma cruentum	FJ037792.1	Aspidosperma cruentum	JQ626066.1
Aspidosper sp1	ma Aspidosperma triternatum	AM295077.1	NA	NA	Aspidosperma triternatum	AJ419735.1
Aspidosper spruceanu	ma Aspidosperma m spruceanum	GQ981941.1	NA	NA	Aspidosperma Spruceanum	JQ625998.1

Astronium graveolens	Astronium graveolens	AY594492.1	Astronium urundeuva	DQ787397.1	Astronium graveolens	AY462009.1
Aureliana fasciculate	Aureliana fasciculata	EF537319.1	Aureliana fasciculata	KC832798.1	NA	NA
Bactris ferruginea	Bactris ferruginea	HQ265553.1	NA	NA	Bactris humilis	AY044627.1
Bactris setosa	Bactris killipii	HQ265555.1	NA	NA	Bactris setosa	KF981202.1
Banara brasiliensis	NA	NA	NA	NA	Banara guianensis	AJ402923.1
Basiloxylon brasiliensis	NA	NA	NA	NA	NA	NA
Bathysa mendoncaei	Bathysa stipulata	FJ905337.1	Bathysa stipulata	FJ984963.1	Bathysa stipulata	HM164156.1
Bathysa sp1	Bathysa peruviana	FJ905336.1	Bathysa peruviana	FJ984962.1	Bathysa peruviana	AM117206.1
Bauhinia sp1	Bauhinia purpurea	JN881391.1	Bauhinia purpurea	JX856406.1	Bauhinia purpurea	Z70162.1

Beilschmiedia linharensis	Beilschmiedia berteroana	AJ247147.2	NA	NA	Beilschmiedia robusta	KR528841.1
Blanchetiodendr on blanchetii	NA	NA	Blanchetiodendor blanchetii	JX870658.1	NA	NA
Bowdichia virgilioides	Bowdichia virgilioides	JX124393.1	Bowdichia virgilioides	JX124475.1	Bowdichia sp.	KF667939.1
Brosimum guianense	Brosimum guianense	JQ626530.1	Brosimum guianense	FJ037845.1	Brosimum guianense	JX987570.1
Brosimum rubescens	Brosimum rubescens	JQ626346.1	NA	NA	Brosimum rubescens	JQ625739.1
Buchenavia sp1	Buchenavia tetraphylla	HM446660.3	NA	NA	Buchenavia tetraphylla	FJ381805.1
Byrsonima alvimii	Byrsonima crassifolia	JX661932.1	Byrsonima crassifolia	DQ787393.1	Byrsonima crassifolia	AB233898.1
	Byrsonima	KJ012489.1		DQ787387.1	Byrsonima	HQ247462.1

Byrsonima fanshawei	lucida		Byrsonima vaccinifolia		lucida	
Byrsonima laxiflora	Byrsonima wadsworthii	KJ012491.1	Byrsonima gardneriana	DQ787385.1	Byrsonima wadsworthii	HM446764.1
Byrsonima sericea	Byrsonima crispa	HQ247238.1	NA	NA	Byrsonima laevigata	JQ625809.2
Byrsonima sp2	NA	NA	NA	NA	NA	NA
Byrsonima stipulacea	Byrsonima spicata	HM446661.1	NA	NA	Byrsonima spicata	HM446763.1
Cabralea canjerana	Cabralea canjerana	KF555384.1	Cabralea canjerana	DQ861617.1	Cabralea canjerana	DQ238055.1
Calliandra calycina	Calliandra californica	AY386844.1	Calliandra californica	JX870672.1	Calliandra californica	KU054400.1
Calyptranthes grandifolia	Calyptranthes grandifolia	JN091302.1	Calyptranthes grandifolia	JN091201.1	Calyptranthes speciosa	JQ626314.1
Calyptranthes sp1	Calyptranthes concinna	AM489980.1	Calyptranthes concinna	AM234103. 1	Calyptranthes concinna	KF981247.1

Calyptranthes sp4	Calyptranthes pallens	AF368201.2	NA	NA	NA	NA
Campomanesia dichotoma	Campomanesia guazumifolia	AY521532.2	Campomanesia guazumifolia	AM234076. 1	NA	NA
Campomanesia laurifolia	Campomanesia xanthocarpa	KF555387.1	Campomanesia xanthocarpa	KF421010.1	Campomanesia xanthocarpa	KF561906.1
Carpotroche brasiliensis	Carpotroche longifolia	EF135514.1	NA	NA	NA	NA
Cariniana estrellensis	NA	NA	NA	NA	Cariniana legalis	Z80179.1
Caryocar edule	Caryocar glabrum	EF135515.1	Caryocar glabrum	FJ037803.1	Caryocar glabrum	AF206745.1
Casearia arborea	Casearia arborea	GQ981951.1	NA	NA	Casearia arborea	GQ981686.1
Casearia bahiensis	Casearia nitida	JX661934.1	NA	NA	Casearia nitida	JX664038.1
Casearia commersoniana	Casearia commersoniana	GQ981952.1	NA	NA	Casearia commersoniana	GQ981687.1
Casearia sylvestris	Casearia sylvestris	JQ589116.1	NA	NA	Casearia sylvestris	JQ625967.1
Casearia sp1	Casearia velutina	HQ415294.1	Casearia velutina	KP092979.1	Casearia velutina	KP094437.1
Casearia sp2	Casearia javitensis	JQ626446.1	NA	NA	Casearia javitensis	AY935744.1

Cecropia cecropiifolia	Cecropia palmata	GU135054.1	NA	NA	Cecropia palmata	AF061196.1
Cecropia hololeuca	Cecropia peltata	JQ589392.1	Cecropia peltata	KT207489.1	Cecropia peltata	JQ594320.1
Cecropia pachystachya	Cecropia pachystachya	KU587476.1	Cecropia ficifolia	KF137825.1	Cecropia pachystachya	KF981293.1
Cecropia sp1	Cecropia obtusa	JQ626552.1	NA	NA	Cecropia obtusa	JQ626251.1
Cedrela odorata	Cedrela odorata	AY128182.1	NA	NA	Cedrela odorata	AJ402938.1
Ceiba sp1	Ceiba aesculifolia	KM219819.1	Ceiba aesculifolia	HQ658384.1	Ceiba aesculifolia	JQ592498.1
Cestrum laevigatum	Cestrum laevigatum	JX517961.1	Cestrum newellii	KP100291.1	Cestrum laevigatum	JX572398.1
Chaetocarpus echinocarpus	Chaetocarpus castanocarpus	AY552460.1	NA	NA	Chaetocarpus castanocarpus	AB925591.1
Chaetocarpus sp1	Chaetocarpus africanus	AB233754.1	NA	NA	Chaetocarpus africanus	AY794969.1
Chamaecrista amorimii	Chamaecrista fasciculata	AY386955.1	Chamaecrista fasciculata	EF590760.1	Chamaecrista fasciculata	U74187.1
Chamaecrista bahiae	Chamaecrista nictitans	EU361914.1	Chamaecrista nictitans	KU720156.1	Chamaecrista nictitans	AM234248.1
Chamaecrista duartei	Chamaecrista diphylla	JQ587554.1	Chamaecrista diphylla	FJ009868.1	Chamaecrista diphylla	JQ591641.1

Chamaecrista sp1	Chamaecrista nigricans	JQ301885.1	Chamaecrista nigricans	KT279731.1	Chamaecrista nigricans	JQ301865.1
Chamaecrista sp2	Chamaecrista grantii	KR734644.1	NA	NA	Chamaecrista grantii	KR736797.1
Cheiloclinium cognatum	Cheiloclinium cognatum	FJ705538.1	Cheiloclinium cognatum	FJ705511.1	Cheiloclinium cognatum	JQ626275.1
Chionanthus sp1	Chionanthus retusus	HM751206.1	Chionanthus retusus	LN590009.1	Chionanthus retusus	KP088536.1
Chomelia pedunculosa	Chomelia spinosa	JQ588925.1	Chomelia spinosa	GQ852115.1	Chomelia spinosa	JQ593642.1
Chrysophyllum gonocarpum	Chrysophyllum gonocarpum	JQ413927.1	Chrysophyllum wagapense	HE860077.1	Chrysophyllum argenteum	JX987579.1
Chrysophyllum lucentifolium	Chrysophyllum sp.	KC627609.1	Chrysophyllum prieurii	KJ399350.1	Chrysophyllum lucentifolium	JQ626114.1
Chrysophyllum splendens	Chrysophyllum splendens	JQ413883.1	Chrysophyllum splendens	JQ434153.1	Chrysophyllum splendens	JQ413836.1
Clarisia biflora	NA	NA	NA	NA	Clarisia biflora	JQ592805.1
Clarisia ilicifolia	NA	NA	NA	NA	NA	NA
Coccoloba arborescens	Coccoloba tenuifolia	KJ012535.1	Coccoloba tenuifolia	HM137437. 1	Coccoloba tenuifolia	KJ082224.1
Coccoloba bullata	Coccoloba uvifera	KJ012536.1	Coccoloba uvifera	JQ352608.1	Coccoloba uvifera	AF206753.1

Coccoloba declinata	Coccoloba mollis	JQ626541.1	Coccoloba rugosa	HM137435. 1	Coccoloba pyrifolia	Z97647.1
Coccoloba glaziovii	NA	NA	Coccoloba swartzii	FJ154469.1	Coccoloba swartzii	AF297150.1
Coccoloba marginata	Coccoloba tuerckheimii	JQ588850.1	Coccoloba peltata	FJ154467.1	Coccoloba peltata	FJ154452.1
Coccoloba oblonga	Coccoloba guanacastensis	JQ588842.1	Coccoloba spicata	HM137436. 1	NA	NA
Coccoloba rosea	Coccoloba parimensis	KJ593830.1	NA	NA	Coccoloba parimensis	KJ594185.1
Coccoloba sp1	NA	NA	Coccoloba brasiliensis	HM137430. 1	NA	NA
Combretum sp1	Combretum apiculatum	KC130323.1	NA	NA	Combretum apiculatum	EU338143.1
Conchocarpus macrophyllus	NA	NA	NA	NA	Conchocarpus nicaraguenses	JQ593909.1
Copaifera langsdorffii	Copaifera officinalis	EU361918.1	Copaifera officinalis	AY955816.1	NA	NA
Copaifera lucens	Copaifera mildbraedii	EU361917.1	Copaifera mildbraedii	AY955814.1	NA	NA
Copaifera trapezifolia	Copaifera salikounda	EU361919.1	Copaifera salikounda	AY955815.1	NA	NA
Cordia anabaptista	Cordia nevillii	HQ384571.1	Cordia diversifolia	JF332112.1	Cordia nevillii	HQ384923.1

Cordia ecalyculata	Cordia myxa	EU599652.1	Cordia sebestena	JF332107.1	Cordia sebestena	KT740817.1
Cordia glabrifolia	Cordia sagotii	JQ626469.1	Cordia saccellia	JF332111.1	Cordia saccellia	KF158129.1
Cordia membranacea	Cordia sp.	JQ626489.1	Cordia sp.	JF332091.1	Cordia sp.	JQ933277.1
Cordia mucronata	Cordia torrei	JX517572.1	Cordia elaeagnoides	JF332106.1	Cordia torrei	JX572474.1
Cordia polycephala	Cordia polycephala	KJ012819.1	Cordia polycephala	HM443762. 1	Cordia polycephala	KJ082632.1
Cordia sellowiana	Cordia spinescens	KJ594078.1	Cordia sellowiana	JF332069.1	Cordia spinescens	KJ594553.1
Cordia sp1	Cordia dichotoma	KP093718.1	Cordia dichotoma	JF332093.1	Cordia dichotoma	KU564784.1
Cordia sp2	Cordia panamensis	JQ587115.1	Cordia panamensis	JF332060.1	Cordia panamensis	JQ590919.1
Cordia sp3	Cordia gerascanthus	JQ587094.1	Cordia gerascanthus	JF332100.1	Cordia gerascanthus	JQ590899.1
Cordia sp4	Cordia globulifera	KM219831.1	Cordia oncocalyx	JF332108.1	Cordia oncocalyx	KF158082.1
Cordia sp5	Cordia curassavica	KJ012548.1	Cordia curassavica	JF332114.1	Cordia curassavica	KJ082238.1
Cordia taguahyensis	Cordia eriostigma	JQ589894.1	Cordia taguahyensis	JF332087.1	Cordia eriostigma	JQ590894.1

Cordia toqueve	Cordia monoica	KR735050.1	Cordia monoica	JF332095.1	Cordia monoica	KF158112.1
Cordia trachyphylla	Cordia dentata	JQ587086.1	Cordia dentata	JF332104.1	Cordia dentata	EU599830.1
Cordiera bahiensis	NA	NA	NA	NA	Cordiera triflora	KF964823.1
Cordiera sp1	NA	NA	NA	NA	NA	NA
Couepia belemii	Couepia guianensis	JQ898837.1	Couepia guianensis	KJ414475.1	Couepia guianensis	JQ626008.1
Couepia bondarii	Couepia caryophylloides	JQ898839.1	Couepia caryophylloides	JQ899002.1	Couepia caryophylloides	JQ625980.1
Couepia impressa	Couepia bracteosa	JQ898862.1	Couepia bracteosa	FJ037805.1	Couepia bracteosa	JQ625970.1
Couepia monteclarensis	Couepia habrantha	JQ898865.1	Couepia habrantha	JQ898998.1	Couepia habrantha	JQ626172.1
Coussarea carvalhoi	Coussarea caroliana	JQ589652.1	Coussarea hydrangeifolia	EU145360.1	Coussarea caroliana	JQ594635.1
Coussarea ilheotica	Coussarea curvigemmia	GQ981974.1	Coussarea ilheotica	HM042454. 1	Coussarea curvigemmia	GQ981715.1
Croton floribundus	Croton gratissimus	JX517905.1	Croton floribundus	HM564080. 1	Croton gratissimus	EU213460.1

Croton macrobothrys	Croton pseudopulchell us	EU214237.1	Croton macrobothrys	EU586928.1	Croton pseudopulchellus	EU213466.1
Cryptocarya mandioccana	Cryptocarya mandioccana	HG314989.1	Cryptocarya mandioccana	HG315570.1	Cryptocarya obovata	U06841.1
Cupania emarginata	Cupania dentata	EU720670.1	Cupania dentata	EU720523.1	NA	NA
Cupania impressinervia	Cupania hirsuta	EU720668.1	Cupania hirsuta	EU720521.1	NA	NA
Cupania oblongifolia	Cupania glabra	JQ589136.1	NA	NA	NA	NA
Cupania racemosa	Cupania guatemalensis	JQ589148.1	NA	NA	Cupania guatemalensis	JQ594017.1
Cupania rugosa	Cupania latifolia	JQ589149.1	NA	NA	Cupania latifolia	GQ981719.1
Cupania scrobiculata	Cupania scrobiculata	EU720671.1	Cupania scrobiculata	FJ037860.1	Cupania scrobiculata	JQ625966.1
Cupania sp1	NA	NA	Cupania diphylla	FJ037859.1	Cupania glabra	JQ594011.1
Cupania sp2	Cupania rufescens	GQ981978.1	Cupania vernalis	KF421005.1	Cupania rufescens	GQ981720.1
Cupania sp3	NA	NA	Cupania rubiginosa	EU720481.1	Cupania rubiginosa	JQ626292.1
Cupania sp4	NA	NA	NA	NA	NA	NA

Cupania tenuivalvis	Cupania cinerea	JQ589131.1	Cupania cinerea	JX987539.1	Cupania cinerea	JX987584.1
Cupania torta	Cupania americana	KJ012555.1	NA	NA	Cupania americana	KJ082255.1
Dialium guianense	Dialium guianense	EU361930.1	NA	NA	Dialium guianense	AM234245.1
Dictyoloma vandellianum	NA	NA	NA	NA	Dictyoloma vandellianum	FR747846.1
Diospyros mellinonii	Diospyros virginiana	AB175002.1	Diospyros virginiana	AB175021.1	Diospyros virginiana	EU980774.1
Diospyros sp1	Diospyros kaki	GU471729.1	Diospyros kaki	KF206043.1	Diospyros kaki	EU980698.1
Diploon cuspidatum	Diploon cuspidatum	FJ037936.1	Diploon cuspidatum	DQ246676.1	Diploon cuspidatum	JQ626045.1
Diplotropis incexis	Diplotropis incexis	JX124401.1	Diplotropis incexis	JX124486.1	Diplotropis purpurea	JQ625878.1
Dipteryx sp1	Dipteryx alata	AH009911.2	Dipteryx alata	JF491250.1	Dipteryx odorata	U74245.1
Discocarpus pedicellatus	NA	NA	NA	NA	Discocarpus essequeboensis	AY663583.1
Drypetes sessiliflora	Drypetes madagascarien sis	AY552457.1	Drypetes roxburghii	KC984656.1	Drypetes roxburghii	M95757.2
Duguetia chrysocarpa	NA	NA	NA	NA	Duguetia uniflora	AY738182.1

Ecclinusa ramiflora	Ecclinusa ramiflora	JQ413887.1	Ecclinusa ramiflora	DQ246678.1	Ecclinusa ramiflora	JQ626076.1
Elvasia tricarpellata	Elvasia calophyllea	KF263228.1	Elvasia capixaba	KF263172.1	Elvasia capixaba	KF263349.1
Emmotum nitens	Emmotum nitens	KT738339.1	Emmotum nitens	DQ787414.1	Emmotum nitens	KT740820.1
Enterolobium monjollo	Enterolobium contortisiliquu m	AF274124.1	Enterolobium contortisiliquum	EF638190.1	Enterolobium contortisiliquum	JX571823.1
Eriotheca globose	Eriotheca pentaphylla	HQ696714.1	Eriotheca estevesiae	KM283224. 1	Eriotheca longitubulosa	JQ626270.1
Eriotheca macrophylla	Eriotheca macrophylla	HQ696713.1	Eriotheca macrophylla	HQ658399.1	Eriotheca sp.	JQ626203.1
Eriotheca sp1	Eriotheca roseorum	HQ696711.1	Eriotheca longitubulosa	HQ658396.1	Eriotheca sp.	JQ626181.1
Erythroxylum columbinum	Erythroxylum areolatum	JX661939.1	Erythroxylum sinense	KP092916.1	Erythroxylum areolatum	JX664044.1
Erythroxylum compressum	Erythroxylum novocaledonicu m	AB233826.1	NA	NA	Erythroxylum novocaledonicum	AB233930.1
Erythroxylum cuspidifolium	Erythroxylum delagoense	JF270765.1	Erythroxylum argentinum	AF130316.1	Erythroxylum delagoense	JF265416.1
Erythroxylum martii	NA	NA	Erythroxylum deciduum	KF421001.1	Erythroxylum deciduum	KF561913.1

Erythroxylum mattos silvae	Erythroxylum panamense	GQ981987.1	NA	NA	NA	NA
Erythroxylum squamatum	Erythroxylum emarginatum	JF270766.1	Erytroxylum amplifolium	DQ787423.1	Erythroxylum amplifolium	KF981216.1
Eschweilera complanata	Eschweilera congestiflora	JQ626515.1	Eschweilera congestiflora	JN222324.1	Eschweilera congestiflora	JQ626137.1
Eschweilera mattos silvae	Eschweilera grandiflora	JQ626516.1	Eschweilera grandiflora	JN222311.1	Eschweilera grandiflora	JQ626118.1
Eschweilera ovate	Eschweilera coriacea	JQ626454.1	Eschweilera coriacea	JN222303.1	Eschweilera coriacea	JQ626161.1
Eugenia adenantha	Eugenia uniflora	AF368207.3	Eugenia uniflora	AM234088. 1	Eugenia uniflora	AF294255.2
Eugenia aff pleurantha	Eugenia monticola	JQ588483.1	Eugenia reinwardtiana	KU945989.1	Eugenia monticola	JQ592942.1
Eugenia astringens	Eugenia reinwardtiana	KU945995.1	Eugenia astringens	KJ187606.1	Eugenia reinwardtiana	KM895822.1
Eugenia ayacuchae	NA	NA	Eugenia buxifolia	KU945987.1	Eugenia tetramera	JQ626289.1
Eugenia batingabranca	Eugenia mespiloides	KU945994.1	Eugenia mespiloides	KU945988.1	Eugenia pseudopsidium	JQ626267.1
Eugenia blastantha	Eugenia sulcata	AM489987.1	Eugenia sulcata	KJ187647.1	Eugenia patrisii	JQ626196.1
Eugenia candolleana	NA	NA	Eugenia wynadensis	KU945990.1	Eugenia cupulata	JQ626185.1

Eugenia excelsa	Eugenia sp.	KY047423.1	Eugenia excelsa	KJ187621.1	NA	NA
Eugenia excoriata	Eugenia verdoorniae	JX517398.1	Eugenia verdoorniae	AY463137.1	Eugenia verdoorniae	JX572585.1
Eugenia flamingensis	Eugenia oerstediana	JQ588485.1	NA	NA	Eugenia cucullata	JQ626057.1
Eugenia florida	Eugenia dysenterica	JX850043.1	Eugenia dysenterica	KJ187620.1	Eugenia tapacumensis	JQ625718.1
Eugenia itapemirimensis	Eugenia feijoi	JQ626380.1	Eugenia wentii	KJ187651.1	Eugenia feijoi	JQ625914.1
Eugenia lacistema	Eugenia woodburyana	KJ012600.1	NA	NA	Eugenia woodburyana	KJ082311.1
Eugenia luschnathiana	Eugenia singampattiana	KU301783.1	Eugenia cocosensis	KM495163. 1	Eugenia talbotii	KC628524.1
Eugenia magnifica	Eugenia padronii	KJ012592.1	Eugenia pacifica	KM495178. 1	Eugenia padronii	KJ082306.1
Eugenia melanogyna	Eugenia stahlii	KJ012599.1	Eugenia melanogyna	KJ187624.1	Eugenia stahlii	HM446797.1
Eugenia pauciflora	NA	NA	Eugenia stictosepala	AM234086. 1	Eugenia eggersii	HM446796.1
Eugenia persicifolia	NA	NA	Eugenia beaurepairiana	KJ187609.1	Eugenia oerstediana	JQ592956.1
Eugenia pisiformis	NA	NA	Eugenia pisiformis	KJ187634.1	NA	NA

Eugenia platyphylla	Eugenia macrocalyx	JQ626398.1	NA	NA	NA	NA
Eugenia plicata	Eugenia foetida	KJ772772.1	Eugenia foetida	AY487298.1	Eugenia foetida	KJ773495.1
Eugenia prasina	Eugenia confusa	KJ772771.1	Eugenia prasina	KJ187637.1	Eugenia confusa	KJ773494.1
Eugenia pruniformis	NA	NA	NA	NA	Eugenia monticola	JQ592946.1
Eugenia rostrata	Eugenia sessiliflora	KJ012598.1	Eugenia rostrata	DQ787392.1	Eugenia sessiliflora	KJ082309.1
Eugenia schottiana	Eugenia rhombea	KJ012597.1	NA	NA	Eugenia rhombea	KJ082308.1
Eugenia sp1	NA	NA	NA	NA	NA	NA
Eugenia sp10	NA	NA	NA	NA	NA	NA
Eugenia sp11	NA	NA	NA	NA	NA	NA
Eugenia sp13	NA	NA	NA	NA	NA	NA
Eugenia sp15	NA	NA	NA	NA	NA	NA
Eugenia sp17	Eugenia ligustrina	KJ012590.1	Eugenia cucullata	FJ037853.1	NA	NA

Eugenia sp18	NA	NA	Eugenia tropophylla	AY487303.1	NA	NA
Eugenia sp19	NA	NA	NA	NA	Eugenia ligustrina	KJ082304.1
Eugenia sp20	NA	NA	NA	NA	NA	NA
Eugenia sp22	Eugenia borinquensis	KJ012586.1	Eugenia tetramera	KJ187648.1	Eugenia borinquensis	KJ082298.1
Eugenia sp23	Eugenia biflora	KJ012585.1	Eugenia biflora	KJ187610.1	Eugenia biflora	KJ082297.1
Eugenia sp24	Eugenia axillaris	KJ012582.1	Eugenia axillaris	KJ187607.1	Eugenia axillaris	KJ773493.1
Eugenia sp25	Eugenia capensis	KF147400.1	Eugenia capensis	AY487292.1	Eugenia capensis	KF147474.1
Eugenia sp27	Eugenia albanensis	KF147399.1	Eugenia albanensis	AY487286.1	Eugenia albanensis	KF147473.1
Eugenia sp28	Eugenia talbotii	KC627918.1	Eugenia umbrosa	KJ187649.1	NA	NA
Eugenia sp29	Eugenia salamensis	JQ588488.1	Eugenia subavenia	KJ187646.1	Eugenia salamensis	JQ592960.1
Eugenia sp3	Eugenia hypargyrea	JQ588480.1	NA	NA	Eugenia hypargyrea	JQ592938.1
Eugenia sp30	Eugenia natalitia	JF270773.1	Eugenia natalitia	AY463135.1	Eugenia natalitia	JX572582.1

Eugenia sp31	Eugenia erythrophylla	JX517830.1	Eugenia erythrophylla	AY463139.1	Eugenia erythrophylla	JX572581.1
Eugenia sp34	NA	NA	Eugenia stipitata	KJ187645.1	NA	NA
Eugenia sp35	Eugenia zuluensis	JX517795.1	Eugenia zuluensis	AY487293.1	Eugenia zuluensis	JX572588.1
Eugenia sp36	Eugenia woodii	JX518025.1	Eugenia woodii	AY463138.1	Eugenia woodii	JX572586.1
Eugenia sp37	Eugenia umtamvunensis	JX517784.1	Eugenia umtamvunensis	AY463142.1	Eugenia umtamvunensis	JX572584.1
Eugenia sp38	Eugenia zeyheri	JX517750.1	Eugenia zeyheri	AY463136.1	Eugenia zeyheri	JX572587.1
Eugenia sp39	Eugenia coloradoensis	GQ981988.1	NA	NA	Eugenia coloradoensis	GQ981730.1
Eugenia sp4	Eugenia domingensis	HM446685.1	Eugenia sphenophylla	KJ187644.1	Eugenia domingensis	HM446795.1
Eugenia sp40	NA	NA	NA	NA	Eugenia calcadensis	KU301781.1
Eugenia sp41	NA	NA	NA	NA	NA	NA
Eugenia sp43	NA	NA	Eugenia punicifolia	AM234087. 1	NA	NA
Eugenia sp45	NA	NA	NA	NA	NA	NA

Eugenia sp46	NA	NA	NA	NA	NA	NA
Eugenia sp47	NA	NA	NA	NA	NA	NA
Eugenia sp48	NA	NA	Eugenia repanda	KJ187640.1	Eugenia stigmatosa	KF981249.1
Eugenia sp49	NA	NA	Eugenia pyriformis	KJ187639.1	Eugenia neoglomerata	KF981248.1
Eugenia sp5	NA	NA	NA	NA	NA	NA
Eugenia sp50	NA	NA	Eugenia pluriflora	KJ187636.1	NA	NA
Eugenia sp51	NA	NA	Eugenia pitanga	KJ187635.1	NA	NA
Eugenia sp52	NA	NA	Eugenia sp.	KT970714.1	NA	NA
Eugenia sp53	NA	NA	Eugenia patens	KJ187633.1	Eugenia nesiotica	GQ981732.1
Eugenia sp6	NA	NA	Eugenia orbignyana	KJ187632.1	Eugenia galalonensis	GQ981731.1
Eugenia sp7	NA	NA	Eugenia neoverrucosa	KJ187628.1	Eugenia stahlii	KJ082310.1
Eugenia sp9	NA	NA	Eugenia nutans	KJ187629.1	NA	NA

Eugenia subterminalis	Eugenia eggersii	HM446686.1	Eugenia bacopari	KJ187608.1	NA	NA
Eugenia umbellata	Eugenia nesiotica	GQ981989.1	NA	NA	NA	NA
Euterpe edulis	Euterpe precatoria	KP083040.1	NA	NA	Euterpe edulis	KF981203.1
Exostyles venusta	Exostyles venusta	JX152591.1	Exostyles venusta	JX152664.1	NA	NA
Faramea bicolor	Faramea multiflora	JQ588944.1	Faramea multiflora	EU145363.1	Faramea multiflora	Z68796.1
Faramea biflora	Faramea occidentalis	JQ588947.1	Faramea crassifolia	HM042456. 1	Faramea pedunculata	JQ626208.1
Faramea nocturna	NA	NA	Faramea torquata	HM042455. 1	NA	NA
Ferdinandusa edmundoi	Ferdinandusa paraenses	JQ626376.1	Ferdinandusa ovalis	FJ984988.1	Ferdinandusa speciosa	AM117226.1
Ficus americana	Ficus americana	KJ012603.1	Ficus americana	AY730070.1	Ficus americana	KJ082316.1
Ficus christianii	Ficus tinctoria	JQ773605.1	Ficus cordata	KJ845976.1	Ficus formosana	JQ773683.1
Ficus hirsuta	Ficus benjamina	JQ773509.1	Ficus benjamina	KP093097.1	Ficus benjamina	AF500350.1
Ficus insipida	Ficus insipida	JQ588407.1	Ficus insipida	KM186249. 1	Ficus insipida	JQ592836.1

Ficus sp1	NA	NA	Ficus tinctoria	JF976330.1	Ficus tinctoria	JQ773786.1
Ficus sp2	NA	NA	NA	NA	NA	NA
Garcinia gardneriana	NA	NA	Garcinia mangostana	KX266900.1	Garcinia mangostana	HQ332057.1
Garcinia macrophylla	Garcinia tsaratananae	HQ331610.1	NA	NA	Garcinia tsaratananae	HQ332065.1
Geissospermum leave	Geissospermum laeve	DQ660517.1	NA	NA	Geissospermum laeve	JQ625891.1
Glycydendron amazonicum	Glycydendron amazonicum	AB268046.1	NA	NA	Glycydendron amazonicum	AB267942.1
Gomidesia fenzliana	Gomidesia fenzliana	KF981338.1	Gomidesia flagellaris	AM234113. 1	Gomidesia fenzliana	KF981251.1
Gomidesia langsdorffii	Gomidesia lindeniana	KJ012612.1	Gomidesia schaueriana	AM234112. 1	Gomidesia schaueriana	KF981252.1
Guapira hirsuta	Guapira riedeliana	FN597630.1	NA	NA	Guapira standleyana	GQ981748.1
Guapira laxiflora	Guapira opposita	KF981349.1	Guapira eggersiana	EF079496.1	Guapira opposita	KF981271.1
Guapira nitida	Guapira fragrans	KJ012616.1	Guapira fragrans	JX844233.1	Guapira fragrans	JX844257.1
Guapira obtusata	Guapira discolor	KJ522684.1	Guapira discolor	EF079476.1	Guapira discolor	KJ522686.1

Guapira opposita	NA	NA	NA	NA	Guapira macrocarpa	KU176147.1
Guapira sp1	Guapira standleyana	GQ982001.1	NA	NA	Guapira obtusata	KJ082335.1
Guapira sp2	NA	NA	NA	NA	NA	NA
Guapira sp3	NA	NA	NA	NA	NA	NA
Guarea blanchetii	Guarea silvatica	JQ626438.1	Guarea silvatica	FJ037836.1	Guarea silvatica	JQ626002.1
Guarea guidonia	Guarea guidonia	HM446695.2	Guarea glabra	AY695591.1	Guarea guidonia	JQ626153.1
Guarea sp1	Guarea grandifolia	GQ982002.1	NA	NA	Guarea costata	JQ625748.1
Guatteria australis	Guatteria australis	AY740915.1	NA	NA	Guatteria venezuelana	DQ861831.1
Guatteria candolleana	Guatteria cf. candolleana	DQ125070.1	NA	NA	Guatteria cf. candolleana	DQ124946.1
Guatteria glabrescens	Guatteria glabrescens	AY740926.1	NA	NA	Guatteria glabrescens	AY740975.1
Guatteria oligocarpa	Guatteria oligocarpa	AY740939.1	NA	NA	Guatteria oligocarpa	AY740988.1
Guatteria pogonopus	Guatteria pogonopus	DQ125087.1	NA	NA	Guatteria pogonopus	DQ124963.1

Guettarda platyphylla	Guettarda speciosa	LN680358.1	Guettarda speciosa	DQ063689.1	Guettarda speciosa	AY538485.1
Guettarda sp1	NA	NA	Guettarda uruguensis	AY730294.1	Guettarda uruguensis	X83638.1
Guettarda viburnoides	Guettarda foliacea	JQ588955.1	Guettarda pohliana	DQ063684.1	Guettarda foliacea	GQ981754.1
Handroanthus chrysotrichus	NA	NA	Handroanthus aureus	KM054196. 1	Handroanthus aureus	KF432023.1
Handroanthus impetiginosus	Handroanthus impetiginosus	KM219811.1	Handroanthus impetiginosus	JX856460.1	Handroanthus impetiginosus	KU176157.1
Handroanthus sp1	Handroanthus albus	KF981308.1	NA	NA	Handroanthus albus	KF981207.1
Harleyodendron unifoliolatum	Harleyodendro n unifoliolatum	JX152592.1	Harleyodendron unifoliolatum	JX152665.1	NA	NA
Heisteria ovate	Heisteria densifrons	JQ626520.1	NA	NA	Heisteria densifrons	DQ790162.1
Heisteria perianthomega	Heisteria concinna	DQ790197.1	NA	NA	Heisteria concinna	DQ790161.1
Heisteria sp2	Heisteria parvifolia	DQ790199.1	NA	NA	Heisteria parvifolia	AJ131771.1
Helicostylis tomentosa	Helicostylis tomentosa	JQ626514.1	Helicostylis tomentosa	FJ037846.1	Helicostylis tomentosa	FJ038122.1
	iomeniosa		iomeniosa			

Hevea brasiliensis	Hevea brasiliensis	HQ606140.1	NA	NA	Hevea brasiliensis	AB267943.1
Himatanthus articulates	Himatanthus sp.	JQ626428.1	NA	NA	Himatanthus sp.	JQ625987.1
Himatanthus bracteatus	Himatanthus bracteatus	EF456366.1	NA	NA	NA	NA
Himatanthus phagedaenicus	NA	NA	NA	NA	NA	NA
Hirtella hebeclada	Hirtella hebeclada	JQ898843.1	Hirtella hebeclada	JQ899020.1	Hirtella hebeclada	KF981211.1
Hirtella sp1	Hirtella suffulta	JQ626404.1	Hirtella suffulta	FJ037812.1	Hirtella suffulta	JQ625956.1
Hirtella sp2	Hirtella triandra	JQ898854.1	Hirtella triandra	GQ424461.1	Hirtella triandra	GQ424481.1
Hornschuchia oblique	NA	NA	NA	NA	Hornschuchia citriodora	AY841625.1
Hortia arborea	NA	NA	NA	NA	Hortia excelsa	JQ625842.2
Humiria balsamifera	Humiria balsamifera	JX661945.1	NA	NA	Humiria balsaminifera	L01926.2
Hydrogaster trinervis	NA	NA	NA	NA	NA	NA
Hyeronima alchorneoides	Hieronyma alchorneoides	JQ626494.1	Hieronyma alchorneoides	FJ037824.1	Hieronyma alchorneoides	JQ626093.1

Hymenaea aurea	Hymenaea aurea	KT724876.1	Hymenaea courbaril	FJ009817.1	Hymenaea courbaril	JQ625969.1
Hymenaea oblongifolia	Hymenaea oblongifolia	EU361973.1	NA	NA	Hymenaea oblongifolia	L08479.1
Hymenolobium janeirense	Hymenolobium janeirense	JX295904.1	Hymenolobium flavum	FJ542760.1	Hymenolobium sp.	JQ625919.1
Ilex sp1	Ilex theizans	KF555394.1	Ilex theezans	AJ492666.1	Ilex theezans	FJ394643.1
Inga capitata	NA	NA	Inga sp.	JX870765.1	NA	NA
Inga cylindrica	Inga punctata	AY386922.1	Inga punctata	GU013231.1	Inga punctata	FJ173748.1
Inga luschnathiana	Inga acrocephala	JQ626478.1	NA	NA	Inga nouragensis	JQ626021.1
Inga sp1	Inga leiocalycina	JQ626467.1	Inga leiocalycina	GU013138.1	Inga leiocalycina	JQ626054.1
Inga sp2	Inga acreana	JQ626411.1	Inga acreana	GU012843.1	Inga acreana	JQ625968.1
Inga sp3	Inga paraenses	JQ626408.1	Inga paterno	KR186244.1	Inga rubiginosa	JQ626295.1
Inga sp4	NA	NA	NA	NA	NA	NA
Inga sp5	Inga huberi	JQ626396.1	Inga huberi	KT722475.1	Inga huberi	JQ625947.1

Inga sp6	Inga sertulifera	JQ587685.1	Inga sertulifera	GU013288.1	Inga sertulifera	FJ173754.1
Inga striata	Inga sp.	JQ589871.1	NA	NA	Inga pezizifera	JQ626261.1
Inga subnuda	NA	NA	NA	NA	Inga sp.	JQ625820.2
Inga thibaudiana	Inga cf. edulis	EU361980.1	Inga edulis	JX870764.1	Inga thibaudiana	GQ981779.1
Inga vera	Inga vera	JQ587688.1	Inga vera	GU013408.1	Inga vera	JQ591826.1
Ixora muelleri	Ixora javanica	KJ708963.1	Ixora sp.	HG964395.1	Ixora littoralis	EU817426.1
Jacaranda jasminoides	NA	NA	NA	NA	Jacaranda arborea	FJ870008.1
Jacaranda puberula	Jacaranda puberula	KF981307.1	Jacaranda puberula	KF420997.1	Jacaranda puberula	KF981206.1
Jacaranda sp2	Jacaranda copaia	JQ626519.1	NA	NA	Jacaranda copaia	JQ626146.1
Jacaranda sp3	NA	NA	NA	NA	Jacaranda mimosifolia	HQ384888.1
Jacaranda sp4	Jacaranda mimosifolia	AJ429328.1	NA	NA	NA	NA
Jacaranda sp5	NA	NA	NA	NA	Jacaranda sparrei	AF102647.1

Jacaratia heptaphylla	Jacaratia corumbensis	JX092008.1	Jacaratia spinosa	JX092062.1	Jacaratia corumbensis	JX091918.1
Kielmeyera elata	Kielmeyera lathrophyton	HQ331641.1	Kielmeyera rosea	AY625622.1	Kielmeyera lathrophyton	AF518400.1
Lacistema robustum	Lacistema robustum	JX661950.1	NA	NA	Lacistema robustum	JX664056.1
Lacistema sp2	Lacistema aggregatum	AB233790.1	NA	NA	Lacistema aggregatum	AB233894.1
Lacmellea bahiensis	Lacmellea aculeata	DQ660523.1	NA	NA	Lacmellea aculeata	JQ626053.1
Lacunaria sp1	Lacunaria macrostachya	KF263232.1	NA	NA	Lacunaria jenmanii	JQ626224.1
Leandra rufescens	Leandra aristigera	KR270494.1	Leandra candelabrum	KF821497.1	Leandra mexicana	AF215536.2
Lecythis lurida	Lecythis zabucajo	JQ626507.1	Lecythis zabucajo	JN222340.1	Lecythis zabucajo	FJ038096.1
Lecythis pisonis	Lecythis persistens	JQ626453.1	Lecythis persistens	JN222250.1	Lecythis persistens	JQ626036.1
Lecythis sp1	Lecythis chartacea	JQ626570.1	Lecythis chartacea	JN222294.1	Lecythis chartacea	JQ626228.1
Licania belemii	Licania riverae	JQ587249.1	Licania parvifructa	JQ899027.1	Licania micranta	JQ626165.1
Licania discolor	Licania splendens	KJ708975.1	Licania splendens	JQ899015.1	Licania splendens	JQ898742.1

Licania hoehnei	Licania octandra	JQ898855.1	Licania octandra	JQ899025.1	Licania octandra	JQ625798.2
Licania hypoleuca	Licania hypoleuca	GQ982032.1	Licania apetala	JQ899023.1	Licania apetala	JQ898720.1
Licania lamentanda	Licania elaeosperma	AB233742.1	Licania longistyla	JQ899022.1	Licania longistyla	JQ898747.1
Licania littoralis	Licania arborea	JQ587243.1	Licania glabriflora	JQ899016.1	Licania glabriflora	JQ625726.1
Licania naviculistipula	NA	NA	Licania amapaenses	JQ899017.1	Licania tomentosa	L11193.2
Licania octandra	NA	NA	Licania ovalifolia	JQ899012.1	Licania kunthiana	JQ625860.2
Licania sp1	Licania platypus	GQ982033.1	NA	NA	Licania heteromorpha	JQ625772.2
Licania sp1 Licaria bahiana	Licania platypus Licaria chrysophylla	GQ982033.1 JQ626395.1	NA Licaria bahiana	NA GQ480368.1	Licania heteromorpha Licaria chrysophylla	JQ625772.2 JQ625945.1
Licania sp1 Licaria bahiana Licaria guianensis	Licania platypus Licaria chrysophylla Licaria triandra	GQ982033.1 JQ626395.1 AJ247168.2	NA Licaria bahiana Licaria guianensis	NA GQ480368.1 AF272281.1	Licania heteromorpha Licaria chrysophylla Licaria guianensis	JQ625772.2 JQ625945.1 GQ428569.1
Licania sp1 Licaria bahiana Licaria guianensis Luehea divaricata	Licania platypus Licaria chrysophylla Licaria triandra Luehea divaricata	GQ982033.1 JQ626395.1 AJ247168.2 KF555407.1	NA Licaria bahiana Licaria guianensis Luehea divaricata	NA GQ480368.1 AF272281.1 KF420987.1	Licania heteromorpha Licaria chrysophylla Licaria guianensis Luehea divaricata	JQ625772.2 JQ625945.1 GQ428569.1 GU981728.1
Licania sp1 Licaria bahiana Licaria guianensis Luehea divaricata Mabea brasiliensis	Licania platypus Licaria chrysophylla Licaria triandra Luehea divaricata Mabea speciosa	GQ982033.1 JQ626395.1 AJ247168.2 KF555407.1 JQ626381.1	NA Licaria bahiana Licaria guianensis Luehea divaricata Mabea sp.	NA GQ480368.1 AF272281.1 KF420987.1 JN250095.1	Licania heteromorpha Licaria chrysophylla Licaria guianensis Luehea divaricata Mabea speciosa	JQ625772.2 JQ625945.1 GQ428569.1 GU981728.1 JQ625917.1
Machaerium hirtum	Machaerium sp.	AF142692.1	Machaerium hirtum	EF451081.1	Machaerium lunatum	U74248.1
---------------------------	--------------------------	------------	---------------------------	------------	-----------------------------	------------
Machaerium sp1	Machaerium seemannii	KJ593928.1	Machaerium gracile	EF451099.1	Machaerium salvadorense	KM510316.1
Maclura tinctoria	Maclura tinctoria	JQ588422.1	Maclura pubescens	KP093095.1	Maclura tinctoria	JQ592866.1
Macoubea guianensis	Macoubea guianensis	GU973901.1	NA	NA	Macoubea guianensis	JQ625771.2
Macrolobium latifolium	Macrolobium bifolium	EU361996.1	Macrolobium sp.	FJ817503.1	Macrolobium acaciifolium	U74191.1
Macrothumia kuhlmannii	NA	NA	NA	NA	NA	NA
Malouetia cestroides	Malouetia tamaquarina	EF456346.1	NA	NA	Malouetia tamaquarina	JQ625814.2
Manilkara longifolia	Manilkara longifolia	KF943849.1	Manilkara longifolia	JQ434142.1	Manilkara longifolia	KF943835.1
Manilkara maxima	Manilkara maxima	JQ413902.1	Manilkara maxima	JQ434145.1	Manilkara maxima	JQ413855.1
Manilkara multifida	Manilkara multifida	JQ413895.1	Manilkara multifida	JQ434140.1	Manilkara multifida	JQ413848.1
Manilkara salzmannii	Manilkara salzmannii	JQ413908.1	Manilkara salzmannii	JQ434149.1	Manilkara salzmannii	KM036004.1
Margaritaria nobilis	Margaritaria nobilis	GQ982040.1	Margaritaria discoidea	AY936664.1	Margaritaria nobilis	GQ981795.1

Matayb discolo	a Matayba r laevigata	EU720676.1	Matayba elaeagnoides	KF420986.1	Matayba laevigata	JQ625852.2
Marlierea s	ucrei NA	NA	Marlierea sucrei	JN091209.1	NA	NA
Marliere suaveole	ea NA ns	NA	Marlierea suaveolens	AM234108. 1	NA	NA
Marlierea	sp4 NA	NA	Marlierea umbraticola	KP722392.1	NA	NA
Marlierea	<i>sp3</i> NA	NA	Marlierea dimorpha	KP722416.1	NA	NA
Marlierea	sp2 NA	NA	Marlierea rubiginosa	KU898292.1	NA	NA
Marlierea	spl NA	NA	Marlierea sp.	KU898323.1	NA	NA
Marlierea	rufa NA	NA	Marlierea mcvaughii	KU898333.1	NA	NA
Marliere racemos	ea Marlierea sa racemosa	JN091303.1	Marlierea racemosa	JN091207.1	Marlierea racemosa	KF981253.1
Marliere obverse	ea NA	NA	Marlierea obversa	JN091206.1	NA	NA
Marliere neuwiedee	ea Marlierea ana eugeniopsoides	AM489996.1	Marlierea neuwiedeana	KP722402.1	Marlierea sintenisii	KJ082409.1
Marliere excoriat	ea Marlierea te obscura	AM4899997.1	Marlierea excoriata	JN091203.1	NA	NA

Matayba guianensis	Matayba guianensis	EU720675.1	Matayba guianensis	EU720527.1	Matayba guianensis	KF981286.1
Matayba juglandifolia	Matayba domingensis	EU720698.1	Matayba domingensis	EU720551.1	Matayba domingensis	KJ082410.1
Maytenus distichophylla	Maytenus distichophylla	HQ267104.1	Maytenus distichophylla	HQ267176.1	Maytenus myrsinoides	JQ625829.2
Maytenus obtusifolia	Maytenus ficiformis	HQ267109.1	Maytenus aff. obtusifolia	HQ267186.1	Maytenus guyanensis	JQ625799.2
Maytenus patens	Maytenus sp.	JQ812686.1	Maytenus salicifolia	HQ267192.1	Maytenus oblongata	JQ626259.1
Melanopsidium nigrum	NA	NA	NA	NA	Melanopsidium nigrum	KF964854.1
Melanoxylon brauna	Melanoxylon brauna	EU362000.1	NA	NA	Melanoxylon brauna	AY904388.1
Miconia amoena	Miconia longispicata	KR270496.1	Miconia pittieri	KF821679.1	Miconia sp.	JQ626333.1
Miconia centrodesma	Miconia acuminata	JQ626538.1	Miconia centrodesma	AY460504.1	Miconia dodecandra	EU711396.1
Miconia dorsaliporosa	Miconia tschudyoides	JQ626534.1	Miconia victorinii	KF821726.1	Miconia fragilis	JQ626299.1
Miconia hypoleuca	Miconia pachyphylla	KJ012680.1	Miconia wagneri	KF821727.1	Miconia punctata	JQ625848.2
Miconia minutiflora	Miconia foveolata	KJ012679.1	Miconia foveolata	AY460511.1	Miconia foveolata	KJ082421.1

Miconia mirabilis	Miconia impetiolaris	GQ982044.1	Miconia impetiolaris	AY460513.1	Miconia impetiolaris	GQ981803.1
Miconia nervosa	Miconia argentea	GQ982043.1	Miconia argentea	AY460503.1	Miconia argentea	GQ981799.1
Miconia prasina	Miconia affinis	GQ982042.1	Miconia prasina	AY460520.1	Miconia prasina	KF724280.1
Miconia sp1	NA	NA	Miconia tonduzii	KF821719.1	Miconia tschudyoides	JQ626210.1
Miconia sp2	NA	NA	Miconia tiliifolia	KF821715.1	NA	NA
Miconia speciosa	NA	NA	Miconia tillettii	KF821716.1	Miconia pyramidalis	JF832004.1
Micropholis crassipedicellat a	Micropholis crassipedicellat a	JQ413925.1	Micropholis crassipedicellata	JQ434165.1	Micropholis crassipedicellata	JQ413878.1
Micropholis gardneriana	Micropholis gardneriana	JQ413917.1	Micropholis gardneriana	JQ434161.1	Micropholis gardneriana	JQ413870.1
Micropholis guyanensis	Micropholis guyanensis	JQ626512.1	Micropholis guyanensis	DQ246682.1	Micropholis guyanensis	JQ626126.1
Mimosa sp1	Mimosa pudica	AY177668.1	Mimosa scabrella	KF420983.1	Mimosa strigillosa	KJ773686.1
Moldenhawera blanchetiana	Moldenhawera brasiliensis	EU362004.1	NA	NA	Moldenhawera brasiliensis	AY904390.1

Moldenhawera floribunda	NA	NA	NA	NA	NA	NA
Moldenhawera sp1	NA	NA	NA	NA	NA	NA
Moldenhawera sp2	NA	NA	NA	NA	NA	NA
Mollinedia sp1	Mollinedia boracensis	KF981331.1	Mollinedia widgrenii	GU177659.1	Mollinedia boracensis	KF981242.1
Mollinedia sp2	Mollinedia schottiana	KF981332.1	Mollinedia schottiana	GU177658.1	Mollinedia schottiana	KF981243.1
Mollinedia sp3	Mollinedia costaricensis	JQ588381.1	Mollinedia ovata	GU177657.1	NA	NA
Myrceugenia acutiflora	Myrceugenia myrcioides	AM490000.1	Myrceugenia smithii	JN660931.1	NA	NA
Myrcia acuminatissima	Myrcia acuminatissima	AM490005.1	Myrcia bicolor	KU898331.1	Myrcia deflexa	JQ625859.2
Myrcia aff crocea	Myrcia fallax	AM889732.1	Myrcia fallax	AM234124. 1	Myrcia fallax	JQ625851.2
Myrcia anceps	Myrcia decorticans	JQ626553.1	Myrcia decorticans	JN091221.1	Myrcia decorticans	JQ626253.1
Myrcia calyptranthoides	Myrcia guianensis	KJ012690.1	Myrcia guianensis	JN091224.1	Myrcia guianensis	KJ082449.1
Myrcia carvalhoi	NA	NA	Myrcia carvalhoi	KU898326.1	NA.	NA

Myrcia eximia	NA	NA	Myrcia eximia	KU898315.1	NA	NA
Myrcia felisberti	Myrcia torta	JN091318.1	NA	NA	NA	NA
Myrcia gigantea	Myrcia subverticillaris	JN091316.1	Myrcia maricaensis	KU898330.1	Myrcia magnoliifolia	JQ626044.1
Myrcia grandifolia	Myrcia mutabilis	JN091313.1	Myrcia platyclada	KU898327.1	NA	NA
Myrcia pseudomarlierea	NA	NA	Myrcia pseudomarlierea	KP722404.1	NA	NA
Myrcia racemosa	NA	NA	Myrcia racemosa	KP722380.1	Myrcia racemosa	KF981261.1
Myrcia sp1	NA	NA	Myrcia abbotiana	KU898328.1	Myrcia rostrata	KF981262.1
Myrcia sp11	NA	NA	NA	NA	NA	NA
Myrcia sp12	Myrcia isaiana	JN091311.1	Myrcia microphylla	KU898325.1	Myrcia pubipetala	KF981260.1
Myrcia sp14	Myrcia inaequiloba	JN091310.1	Myrcia inaequiloba	JN091228.1	Myrcia insularis	KF981258.1
Myrcia sp15	Myrcia hexasticha	JN091309.1	Myrcia hexasticha	JN091227.1	Myrcia grandiflora	KF981257.1
Myrcia sp17	NA	NA	NA	NA	Myrcia glabra	KF981256.1

Myrcia sp18	Myrcia clavija	JN091307.1	Myrcia clavija	JN091220.1	Myrcia gatunensis	GQ981808.1
Myrcia sp19	Myrcia amazonica	JN091304.1	Myrcia amazonica	JN091214.1	Myrcia multiflora	KF981259.1
Myrcia sp2	Myrcia leptoclada	HM446717.1	Myrcia glazioviana	KU898324.1	Myrcia leptoclada	HM446837.1
Myrcia sp20	NA	NA	Myrcia bicarinata	KU898313.1	Myrcia bicarinata	KF981255.1
Myrcia sp21	Myrcia deflexa	HM446715.1	Myrcia blanchetiana	KU898321.1	NA	NA
Myrcia sp22	Myrcia gatunensis	GQ982046.1	NA	NA	NA	NA
Myrcia sp24	NA	NA	Myrcia multipunctata	KU898311.1	NA	NA
Myrcia sp25	Myrcia saxatilis	AM490004.1	Myrcia saxatilis	AM234119. 1	NA	NA
Myrcia sp26	Myrcia laruotteana	AM490002.1	Myrcia laruotteana	AM234115. 1	NA	NA
Myrcia sp27	NA	NA	NA	NA	NA	NA
Myrcia sp28	Myrcia selloi	JN091315.1	Myrcia selloi	JN091240.1	NA	NA
Myrcia sp29	Myrcia pubipetala	AM490001.1	Myrcia pubipetala	AM234114. 1	NA	NA

Myrcia sp3	Myrcia glabra	KF981342.1	NA	NA	NA	NA
Myrcia sp30	NA	NA	Myrcia aff. maximiliana	KU898318.1	NA	NA
Myrcia sp31	Myrcia tenuivenosa	JN091317.1	Myrcia aff. venulosa	KU898320.1	NA	NA
Myrcia sp32	Myrcia pulchra	JN091314.1	Myrcia pulchra	KU898312.1	NA	NA
Myrcia sp33	NA	NA	Myrcia megaphylla	KU898317.1	NA	NA
Myrcia sp34	Myrcia lenheirensis	JN091312.1	NA	NA	NA	NA
Myrcia sp35	Myrcia variabilis	JN091319.1	NA	NA	NA	NA
Myrcia sp36	Myrcia sp.	KF981343.1	Myrcia stricta	KU898314.1	NA	NA
Myrcia sp37	NA	NA	Myrcia subterminalis	KU898307.1	NA	NA
Myrcia sp8	NA	NA	NA	NA	NA	NA
Myrcia sp9	NA	NA	NA	NA	NA	NA
Myrcia splendens	NA	NA	Myrcia splendens	JN091242.1	Myrcia splendens	KF561935.1

Myrcia springiana	Myrcia multiflora	AM490003.1	Myrcia multiflora	KP722387.1	NA	NA
Myrcia sylvatica	NA	NA	Myrcia tenuifolia	KU898308.1	NA	NA
Myrcia tetraphylla	NA	NA	Myrcia tetraphylla	KP722389.1	NA	NA
Myrcia vittoriana	NA	NA	Myrcia vittoriana	JN091250.1	NA	NA
Myrciaria floribunda	Myrciaria vexator	AY521544.1	Myrciaria floribunda	AM234094. 1	Myrciaria floribunda	JQ626319.1
Myrciaria guaquiea	Myrciaria borinquena	KJ012691.1	Myrciaria cauliflora	AM234093. 1	Myrciaria borinquena	KJ082450.1
Myrsine coriacea	Myrsine coriacea	JQ588473.1	Myrsine salicina	EU169119.1	Myrsine coriacea	HM446839.1
Myrsine guianensis	Myrsine crassifolia	KU564597.1	Myrsine chathamica	EF660539.1	Myrsine retusa	HM850193.1
Myrsine sp1	Myrsine variabilis	KM894577.1	Myrsine divaricata	EF660534.1	Myrsine variabilis	KM895687.1
Nectandra membranacea	Nectandra grandiflora	KF555421.1	Nectandra grandiflora	KF420973.1	Nectandra grandiflora	KF561939.1
Nectandra purpurea	Nectandra purpurea	EU153857.1	Nectandra purpurea	AF272293.1	Nectandra lanceolata	KF561943.1

Nectandra sp1	Nectandra megapotamica	KF555427.1	Nectandra megapotamica	KF420965.1	Nectandra megapotamica	KF561947.1
Neea duckei	Neea psychotrioides	JQ588519.1	Neea psychotrioides	EF079505.1	Neea psychotrioides	JQ594882.1
Neea floribunda	Neea floribunda	FJ037933.1	Neea floribunda	FJ037855.1	Neea floribunda	JQ626040.1
Neea macrophylla	Neea sp.	JQ626495.1	Neea cauliflora	EF079493.1	Neea sp.	JQ626094.1
Neea madeirana	Neea amplifolia	GQ982052.1	Neea hermafrodita	EF079489.1	Neea amplifolia	GQ981814.1
Neea verticillata	Neea buxifolia	KJ012698.1	Neea buxifolia	JX844242.1	Neea buxifolia	KJ082461.1
Neomitranthes glomerata	Neomitranthes glomerata	KF981344.1	NA	NA	Neomitranthes glomerata	KF981266.1
Neomitranthes langsdorfii	NA	NA	NA	NA	NA	NA
Ocotea aciphylla	Ocotea sp.	EU153873.1	Ocotea aciphylla	DQ787422.1	Ocotea argyrophylla	JQ626098.1

Ocotea cernua	Ocotea cernua	JQ588119.1	Ocotea ramosissima	GQ480393.1	Ocotea cernua	GQ981816.1
Ocotea divaricata	Ocotea oblonga	GQ982053.1	Ocotea velloziana	GQ480395.1	Ocotea amazônica	JQ625996.1
Ocotea elegans	Ocotea indirectinervia	JQ626431.1	Ocotea silvestres	GQ480394.1	Ocotea indirectinervia	JQ625990.1
Ocotea glomerata	Ocotea subterminalis	JQ626427.1	Ocotea glomerata	GQ480380.1	Ocotea subterminalis	JQ625984.1
Ocotea indecora	Ocotea bullata	JQ024978.1	Ocotea indecora	GQ480382.1	Ocotea sp.	JQ625934.1
Ocotea insignis	Ocotea quixos	KR270505.1	Ocotea pomaderroides	GQ480390.1	Ocotea quixos	KR082832.1
Ocotea leucoxylon	Ocotea leucoxylon	HM446721.2	Ocotea pluridomatiata	GQ480389.1	Ocotea leucoxylon	HM446842.1
Ocotea longifolia	Ocotea sintenisii	HM446723.1	Ocotea longifolia	GQ480385.1	Ocotea cinerea	JQ625926.1
Ocotea macrophylla	Ocotea usambarensis	KU748360.1	Ocotea nitida	GQ480387.1	Ocotea usambarensis	KU748374.1
Ocotea montana	Ocotea venulosa	KF981327.1	Ocotea minarum	GQ480386.1	Ocotea venulosa	KF981236.1
Ocotea notata	Ocotea cuneata	KJ012700.1	Ocotea laxa	GQ480384.1	Ocotea splendens	GQ428550.1

Ocotea oppositifolia	Ocotea cymbarum	KU212211.1	Ocotea lancifolia	GQ480383.1	Ocotea cymbarum	KU212212.1
Ocotea percoriacea	Ocotea porosa	KF555434.1	Ocotea percoriacea	AF272311.1	Ocotea porosa	KF561956.1
Ocotea percurrens	Ocotea veraguensis	JQ589849.1	Ocotea diospyrifolia	GQ480379.1	Ocotea percurrens	JQ626120.1
Ocotea puberula	Ocotea puberula	GQ982054.1	Ocotea puberula	KF420955.1	Ocotea puberula	GQ981818.1
	Ocotea		Ocotea		Ocotea	
Ocotea sp1	catharinensis	KF555429.1	daphnifolia	GQ480378.1	catharinensis	KF561950.1
Ocotea sp2	NA	NA	Ocotea brachybotrya	GQ480376.1	Ocotea foetens	KJ595722.1
Ocotea sp3	Ocotea dendrodaphne	JQ589757.1	Ocotea spixiana	AF272316.1	Ocotea dendrodaphne	JQ594769.1
Ocotea sp4	Ocotea tenera	JQ588130.1	Ocotea schomburgkiana	AF272315.1	Ocotea tenera	JQ592375.1
Ocotea sp5	Ocotea mollifolia	JQ588127.1	Ocotea cf. glaziovii	DQ787406.1	Ocotea mollifolia	JQ592372.1
Ophthalmoblapt on crassipes	NA	NA	NA	NA	NA	NA
Ophthalmoblapt on pedunculare	NA	NA	NA	NA	Ophthalmoblapton pedunculare	AY794848.1

Oreopanax sp1	Oreopanax capitatus	JQ586674.1	Oreopanax echinops	AF242229.1	Oreopanax capitatus	JQ590385.1
Ormosia sp1	Ormosia fordiana	HQ415278.1	Ormosia fordiana	KR532461.1	Ormosia fordiana	KR529852.1
Ouratea papulosa	Ouratea sp.	JX661955.1	Ouratea sp.	KF263199.1	Ouratea sp.	JX664061.1
Ouratea sp2	NA	NA	Ouratea polyantha	KF263198.1	Ouratea polyantha	KF263373.1
Palicourea blanchetiana	Palicourea croceoides	HM446727.1	Palicourea lasiorrhachis	AF072009.1	Palicourea sp.	Z68810.1
Palicourea guianensis	Palicourea guianensis	GQ982058.1	Palicourea guianensis	AF072010.1	Palicourea guianensis	JX987596.1
Parinari alvimii	Parinari montana	JQ898844.1	Parinari canarioides	JQ899029.1	Parinari montana	JQ625788.2
Parinari spl	Parinari brasiliensis	JQ898870.1	Parinari brasiliensis	JQ899028.1	Parinari brasiliensis	JQ898750.1
Parkia pendula	Parkia ulei	JQ626393.1	Parkia timoriana	AF360729.1	Parkia velutina	JQ626274.1
Pausandra megalophylla	NA	NA	NA	NA	Pausandra martinii	AY794887.1
Pavonia makoyana	Pavonia sp.	KR734697.1	NA	NA	Pavonia sp.	KR737458.1
Pavonia morii	Pavonia multiflora	KU054409.1	NA	NA	Pavonia multiflora	KU054393.1

Paypayrola blanchetiana	NA	NA	NA	NA	Paypayrola blanchetiana	KC699606.1
Paypayrola sp1	Paypayrola grandiflora	AB354501.1	NA	NA	Paypayrola grandiflora	AB354429.1
Peltogyne confertiflora	Peltogyne confertiflora	EU362021	Peltogyne confertiflora	AY955798	Peltogyne confertiflora	AF308718
Peltogyne sp1	Peltogyne floribunda	EU362022	Peltogyne pauciflora	AY955799	Peltogyne venosa	JQ625856
Pera glabrata	Pera bicolor	EF135578	Pera glabrata	DQ787417	Pera glabrata	KF981221
Picramnia ciliata	NA	NA	NA	NA	Picramnia polyantha	AF127025.1
Picramnia coccínea	NA	NA	NA	NA	Picramnia pentandra	KJ082489.1
Picramnia glazioviana	NA	NA	NA	NA	Picramnia antidesma	JQ594084.1
Pilocarpus grandiflorus	Pilocarpus racemosus	KJ012714.1	Pilocarpus jaborandi	KC502931.1	Pilocarpus racemosus	KJ082491.1
Pilocarpus riedelianus	NA	NA	NA	NA	Pilocarpus pennatifolius	AF066809.1
Pilocarpus sp1	NA	NA	NA	NA	NA	NA

Pilocarpus spicatus	NA	NA	NA	NA	NA	NA
Piptadenia gonoacantha	Piptadenia constricta	KM219798.1	Piptadenia gonoacantha	KT364065.1	Piptadenia viridiflora	KX640874.1
Piptadenia paniculata	Piptadenia flava	JQ587930.1	NA	NA	Piptadenia flava	JQ592113.1
Pisonia comosa	Pisonia aculeata	KX146265.1	Pisonia aculeata	DQ317077.1	Pisonia aculeata	KU564847.1
Plathymenia foliolosa	Plathymenia reticulata	KX302344.1	NA	NA	NA	NA
Plinia callosa	Plinia guanaca stensis	JQ588505.1	NA	NA	Plinia guanacaste nsis	JQ592978.1
Plinia edulis	NA	NA	Plinia nana	KU898288.1	NA	NA
Plinia grandifolia	NA	NA	NA	NA	NA	NA
Plinia muricata	NA	NA	NA	NA	Plinia rivularis	JQ626311.1
Plinia rara	NA	NA	NA	NA	NA	NA
Plinia sp1	NA	NA	NA	NA	NA	NA
Poecilanthe sp1	Poecilanthe itapuana	KJ028458.1	Poecilanthe itapuana	KJ028462.1	Poecilanthe itapuana	AB045818.1

Pogonophora schomburgkiana	Pogonophora schomburgkian a	EF135585	NA	NA	Pogonophora schomburgkiana	JQ626132
Poincianella pluviosa	NA	NA	Poincianella pluviosa	KP003693	Poincianella caladenia	KU176181
Posoqueria latifolia	Posoqueria latifolia	AY538412.1	Posoqueria latifolia	DQ787409.1	P.latifolia	Z68850.1
Pourouma guianensis	Pourouma bicolor	JQ626509.1	NA	NA	Pourouma bicolor	JQ626107.1
Pourouma mollis	Pourouma minor	JQ589399.1	NA	NA	Pourouma minor	JQ625720.1
Pourouma velutina	Pourouma tomentosa	JQ626513.1	NA	NA	Pourouma tomentosa	JQ626115.1
Pouteria 4	Pouteria caimito	JQ413932.1	Pouteria caimito	KJ399439.1	Pouteria caimito	KF943837.1
Pouteria atlantica	Pouteria gongrijpii	FJ037940.1	Pouteria gongrijpii	FJ037891.1	Pouteria gongrijpii	JQ626231.1
Pouteria bangii	Pouteria bangii	JQ413934.1	Pouteria bangii	JQ434176.1	Pouteria bangii	JQ626236.1
Pouteria bapeba	Pouteria filipes	JQ626499.1	Pouteria domingensis	AY552106.1	NA	NA
Pouteria bilocularis	Pouteria beaurepairei	KF981362.1	Pouteria bilocularis	KJ399376.1	Pouteria bilocularis	JQ626127.1
Pouteria glauca	Pouteria glauca	JQ413937.1	Pouteria glauca	JQ434183.1	Pouteria glauca	KF943838.1

Pouteria grandiflora	Pouteria grandiflora	KF943845.1	Pouteria grandiflora	KF943862.1	Pouteria grandiflora	KF943830.1
Pouteria guianensis	Pouteria guianensis	JQ413943.1	Pouteria guianensis	KJ399406.1	Pouteria guianensis	GQ428635.1
Pouteria macahensis	Pouteria macahensis	JQ413939.1	Pouteria macahensis	JQ434180.1	Pouteria macahensis	JQ413825.1
Pouteria macrophylla	Pouteria obovoidea	GQ248186.1	Pouteria macrophylla	KJ399410.1	Pouteria macrophylla	JQ625805.2
Pouteria microstrigosa	Pouteria multiflora	KJ012732.1	Pouteria multiflora	DQ246693.1	NA	NA
Pouteria peduncularis	Pouteria cladanta	KJ012732.1	Pouteria gardneriana	DQ246689.1	NA	NA
Pouteria procera	Pouteria macrocarpa	FJ037942.1	Pouteria vernicosa	KJ399446.1	NA	NA
Pouteria reticulata	Pouteria reticulata	JQ589189.1	Pouteria reticulata	KJ399434.1	Pouteria reticulata	JQ625962.1
Pouteria sp1	Pouteria rodriguesiana	JQ626337.1	Pouteria hispida	DQ246691.1	Pouteria hispida	JQ626328.1
Pouteria sp2	Pouteria retinervis	JQ626368.1	Pouteria alnifolia	DQ246686.1	NA	NA
Pouteria sp3	Pouteria engleri	JQ626369.1	Pouteria campechiana	DQ246688.1	NA	NA
Pouteria sp4	Pouteria melanopoda	JQ626483.1	Pouteria altissima	DQ246687.1	NA	NA

Pouteria sp5	Pouteria decorticans	JQ626403.1	Pouteria decorticans	FJ037887.1	Pouteria decorticans	JQ625955.1
Pouteria sp6	Pouteria eugeniifolia	JQ626389.1	Pouteria eugeniifolia	KJ399391.1	Pouteria eugeniifolia	JQ625932.1
Pouteria sp7	Pouteria durlandii	JQ413933.1	Pouteria durlandii	KJ399387.1	Pouteria durlandii	JQ625896.1
Pouteria torta	Pouteria torta	KJ399438.1	Pouteria torta	JQ625931.1	Pouteria torta	JQ626418.1
Pouteria venosa	Pouteria venosa	JQ413945.1	Pouteria venosa	JQ434188.1	Pouteria venosa	JQ413830.1
Pradosia kuhlmannii	Pradosia ptychandra	FJ037948.1	Pradosia kuhlmannii	KM042315. 1	Pradosia ptychandra	JQ626027.1
Pradosia lactescens	Pradosia lactescens	JQ413891.1	Pradosia lactescens	JQ434157.1	Pradosia lactescens	JQ413844.1
Pradosia sp1	NA	NA	Pradosia spinosa	DQ246695.1	NA	NA
Pradosia sp2	NA	NA	Pradosia surinamensis	AY552157.1	NA	NA
Protium aracouchini	Protium pallidum	AY594476	Protium aracouchini	AY375493	Protium plagiocarpium	JQ625773
Protium heptaphyllum	Protium divaricatum	AY594475	Protium heptaphyllum	AY375508	Protium giganteum	JQ625844

Protium icicariba	Protium opacum	JQ626503	Protium icicariba	KJ503499	Protium opacum	JQ626194
Protium sp1	Protium costaricense	JQ587173	Protium krukoffii	AY375511	Protium costaricense	GQ981844
Protium sp2	NA	NA	NA	NA	Protium guianense	GU246041.1
Protium warmingiana	Protium morii	JQ626430.1	Protium warmingianum	KJ503503.1	Protium morii	JQ625989.1
Pseudoxandra bahiensis	Pseudoxandra lucida	AY518870.1	NA	NA	Pseudoxandra bahiensis	AY841653.1
Psychotria bahiensis	Psychotria asiatica	HQ415297.1	Psychotria bahiensis	AF149364.1	Psychotria asiatica	AB925623.1
Psychotria leiocarpa	Psychotria marginata	GQ982080.1	Psychotria marginata	FJ208610.1	Psychotria marginata	GQ981857.1
Psychotria mapourioides	Psychotria mapourioides	JQ626482.1	Psychotria mapourioides	AF149393.1	Psychotria mapourioides	JQ626079.1
Psychotria racemosa	Psychotria racemosa	JQ589018.1	Psychotria racemosa	AF149402.1	Psychotria racemosa	JQ593833.1
Psychotria schlechtendalian a	Psychotria kirkii	AY538413.1	Psychotria kirkii	KJ804912.1	Psychotria kirkii	X83663.1
Psychotria sp1	Psychotria berteroana	HM446735.1	Psychotria berteroana	AF072003.1	Psychotria berteroana	HM446859.1
Psychotria tenerior	Psychotria graciliflora	GQ982077.1	Psychotria graciliflora	FJ208608.1	Psychotria graciliflora	JQ594681.1

Psychotria vellosiana	Psychotria horizontalis	JQ589736.1	Psychotria horizontalis	AF072047.1	Psychotria horizontalis	JQ594737.1
Pterocarpus rohrii	Pterocarpus rohrii	JN083564.1	Pterocarpus rohrii	EF451061.1	Pterocarpus rohrii	JN083747.1
Quararibea sp1	Quararibea duckei	JQ626452.1	Quararibea duckei	FJ037834.1	Quararibea duckei	JQ626033.1
Quararibea turbinata	Quararibea turbinata	KJ012743.1	NA	NA	Quararibea turbinata	HM446864.1
Quiina glaziovii	Quiina pteridophylla	EF135589.1	Quiina pteridophylla	KF263226.1	Quiina glaziovii	JX664069.1
Randia armata	Randia armata	KJ136894.1	Randia armata subsp. Panamensis	AF493469.1	Randia armata	GQ981864.1
Randia nitida	Randia thurberi	JQ589044.1	NA	NA	Randia thurberi	KU176177.1
Randia sp1	Randia aculeata	KJ012744.1	Randia aculeata	AM182211. 1	Randia aculeata	KJ773813.1
Randia sp2	Randia grandifolia	JQ589026.1	Randia grandifolia	AF493455.1	Randia grandifolia	JQ594583.1
Rauvolfia grandiflora	Rauvolfia grandiflora	KT955367.1	Rauvolfia serpentina	KM887418. 1	Rauvolfia serpentina	KJ667623.1
Rinorea guianensis	Rinorea subintegrifolia	AB354506.1	Rinorea guianensis	KJ144403.1	Rinorea subintegri folia	AB354434.1

Rollinia sp1	Rollinia herzogii	DQ125062.1	NA	NA	Rollinia herzogii	AY841656.1
Rollinia sp2	Rollinia mucosa	GQ139705.1	NA	NA	Rollinia mucosa	EU420870.1
Roucheria columbiana	Roucheria monsalveae	HM544120.1	NA	NA	Roucheria monsalveae	HM544061.1
Roupala sp1	Roupala montana	JQ588881.1	Roupala montana	EU676097.1	Roupala montana	JQ594708.1
Rudgea aff celastrinea	NA	NA	Rudgea loretensis	KJ804981	NA	NA
Rudgea involucrata	NA	NA	Rudgea viburnoides	KJ804983	Rudgea viburnoides	KJ805779
Rudgea pachyphylla	NA	NA	Rudgea hostmanniana	AF072014	Rudgea hostmanniana	AF072014
Sapium glandulosum	Sapium glandulosum	GQ982089	Sapium sebiferum	AF537586	Sapium glandulosum	AY794841
Schefflera aurata	Schefflera actinophylla	GU135026	Schefflera aurata	GU004067	Schefflera actinophylla	GU135189
Schefflera morototoni	Schefflera morototoni	HM446744	Schefflera morototoni	GU054647	Schefflera morototoni	JQ625796
Schistostemon retusum	Schistostemon retusum	JX661963	NA	NA	Schistostemon retusum	JX664071

Schizocalyx cuspidatus	NA	NA	NA	NA	NA	NA
Schoepfia brasiliensis	Schoepfia jasminodora	HQ415321	Schoepfia jasminodora	KP093191	Schoepfia jasminodora	KP094778
Scyphonychium multiflorum	Scyphonychium cf. multiflorum	EU720672	NA	NA	NA	NA
Sebastiania gaudichaudii	NA	NA	Sebastiania cornuta	AF537587	Sebastiania cornuta	AY794611
					Sebastiania	
Sebastiania jacobinensis	NA	NA	NA	NA	klotzschiana	AY794850
Sebastiania multiramea	NA	NA	NA	NA	Sebastiania klotzschiana	AY794850
Sebastiania sp1	NA	NA	NA	NA	Sebastiania pavoniana	AY794840
Senefeldera multiflora	NA	NA	NA	NA	NA	NA
Senefeldera verticillata	NA	NA	NA	NA	NA	NA
Senegalia sp1	Senegalia melifera	KR735110	Senegalia melifera	KR734204	Senegalia melifera	KR737479
Senna multijuga	Senna multijuga	AM086879	NA	NA	Senna occidentalis	KJ773879

Sei	nna sp1	Senna alata	JQ301868	Senna alata	KX372780	Senna alata	U74250
Sima	ba cedron	Simaba cedron	JQ626421	NA	NA	Simaba cedron	JQ626166
Sin c	narouba 1mara	Simarouba amara	JQ589197	Simarouba amara	DQ787413	Simarouba amara	JQ626282
Simir	a glaziovii	Simira glaziovii	FJ905390	Simira glaziovii	FJ985010	Simira cordifolia	HM164179
Sin	nira sp1	Simira maxonii	FJ905392	Simira maxonii	FJ985012	Simira sampaioana	DQ131787
Sin	nira sp2	Simira lancifolia	FJ905391	Simira lancifolia	FJ985011	NA	NA
Sin	nira sp3	Simira corumbensis	FJ905389	Simira corumbensis	FJ985009	Simira viridiflora	Y18718
Sin	nira sp4	Simira cordifolia	FJ905388	Simira cordifolia	FJ985008	NA	NA
Sij gut	paruna ianensis	Siparuna guianensis	GQ982092	Siparuna guianensis	AF289829	Siparuna guianensis	GQ981872
Si gui	loanea ianensis	Sloanea guianensis	JQ626451	Sloanea montana	KJ675678	Sloanea guianensis	JQ626032
Si obi	loanea tusifolia	Sloanea woollsii	KM894828	Sloanea woollsii	DQ448657	Sloanea woollsii	KM895994
Slo	anea sp1	Sloanea tomentosa	KR531470	Sloanea tomentosa	KR532568	Sloanea tomentosa	KR530022

Solanum sooretamum	Solanum linnaeanum	EF439042	Solanum linnaeanum	DQ364750	Solanum linnaeanum	HM850365
Solanum sp2	Solanum carolinense	KJ773159	Solanum carolinense	LC027925	Solanum carolinense	KJ773908
Sorocea bonplandii	Sorocea sp.	JQ589716	NA	NA	Sorocea sp.	JQ594713
Sorocea guilleminiana	NA	NA	Sorocea affinis	HM747179	Sorocea affinis	GQ981880
Sorocea hilarii	NA	NA	Sorocea muriculata	FJ916998	Sorocea saxicola	KX640884
Sorocea racemosa	NA	NA	Sorocea pileata	FJ916999	Sorocea sp.	JQ594716
Sparattantheliu m botocudorum	Sparattantheliu m amazonum	AJ627931	NA	NA	Sparattanthelium wonotoboense	AF052197
Stachyarrhena harleyi	Stachyarrhena acuminata	JQ626359	NA	NA	Stachyarrhena acuminata	JQ625826
Stephanopodium blanchetianum	NA	NA	NA	NA	NA	NA
Stephanopodium magnifolium	NA	NA	NA	NA	NA	NA
Stephanopodium organense	NA	NA	NA	NA	NA	NA

Sterculia apetala	Sterculia apetala	GQ982103.1	NA	NA	Sterculia apetala	GQ981885.1
Stryphnodendro n pulcherrimum	Stryphnodendro n pulcherrimum	KT364191.1	Stryphnodendron pulcherrimum	KT364088.1	Stryphnodendron microstachyum	JQ592037.1
Swartzia macrostachya	Swartzia cubensis	JQ587868.1	Swartzia macrostachya	EF560873.1	NA	NA
Swartzia oblata	Swartzia alternifoliolata	KT724885.1	Swartzia arbores cens	EF560821.1	NA	NA
Swartzia polita	Swartzia polita	JX295913.1	Swartzia polita	EF560903.1	NA	NA
Swartzia simplex	Swartzia simplex	JQ587874	Swartzia simplex	EF560920	Swartzia simplex	JQ592060
Swartzia sp2	Swartzia jororii	AY386942	Swartzia xanthopetala	EF560937	Swartzia xanthopetala	EF466250
Syagrus botryophora	Syagrus smithii	HQ265572.1	NA	NA	Syagrus smithii	AJ404827.1
Symphonia globulifera	Symphonia globulifera	KC627885.1	Symphonia globulifera	EU841908.1	Symphonia globulifera	JQ625954.1
Tabebuia cassinoides	Tabebuia rosea	JQ587057.1	Tabebuia rosea	JX856517.1	Tabebuia rosea	JX856788.1
Tabebuia elliptica	Tabebuia impet iginosa	JQ587042.1	Tabebuia impetig inosa	JX497695.1	Tabebuia impetigi nosa	JQ590849.1

Tabebuia sp1	Tabebuia palustres	JQ587053.1	Tabebuia pallida	KX689347.1	Tabebuia palustres	JQ590858.1
Tabebuia sp2	Tabebuia rígida	KJ012795.1	Tabebuia chrysotricha	JX497729.1	Tabebuia chrysotricha	JX856787.1
Tabernaemonta na brasiliensis	Tabernaemonta na pandacaqui	GU973953.1	Tabernaemontan a pandacaqui	HQ222983.1	Tabernaemontana pandacaqui	KM895696.1
Tabernaemonta na salzmannii	Tabernaemonta na salzmannii	GU973962.1	Tabernaemontan a divaricata	HQ386697.1	Tabernaemontana divaricata	EU916740.1
Tachigali densiflora	Tachigali paniculata	KR872726.1	NA	NA	Tachigali paniculata	U74240.1
Tachigali paratyensis	Tachigali paratyensis	KR872728.1	NA	NA	Tachigali guianensis	JQ626001.1
Tachigali sp1	Tachigali formicarum	KR872717.1	NA	NA	Tachigali myrmecophila	AY904394.1
Talisia cerasina	NA	NA	Talisia nervosa	EU720474.1	Talisia nervosa	AJ403008.1
Talisia esculenta	Talisia esculenta	KU587499.1	Talisia obovata	EU720485.1	Talisia esculenta	KU559307.1
Tapirira guianensis	Tapirira guianensis	KF981295.1	Tapirira guianensis	DQ787402.1	Tapirira guianensis	JQ626278.1
			Terminalia		Terminalia	
Terminalia brasiliensis	Terminalia catappa	GU135057.1	catappa	KT279737.1	catappa	U26338.2

Tetragastris catuaba	Tetragastris altíssima	JQ626484.1	Tetragastris catuaba	KJ503511.1	Tetragastris altissima	GU246044.1
Tetrastylidium brasiliense	Tetrastylidium peruvianum	DQ790190.1	NA	NA	Tetrastylidium peruvianum	DQ790154.1
Tetrastylidium grandifolium	NA	NA	NA	NA	NA	NA
Tetrorchidium rubrivenium	Tetrorchidium rubrivenium	AB268056.1	NA	NA	Tetrorchidium rubrivenium	AB267952.1
Thyrsodium spruceanum	Thyrsodium puberulum	FJ514664.1	Thyrsodium puberulum	FJ037790.1	Thyrsodium puberulum	JQ626176.1
Tibouchina francavillana	NA	NA	Tibouchina urvilleana	FJ628141.1	Tibouchina urvilleana	U26339.2
Tibouchina sp1	NA	NA	Tibouchina longi folia	JQ730204.1	Tibouchina longifo lia	JQ592706.1
Tocoyena bullata	Tocoyena pittieri	KJ136900.1	Tocoyena pittieri	FM204698.1	Tocoyena pittieri	HM164181.1
Tontelea mauritioides	Tontelea micranta	FJ705563.1	Tontelea micranta	FJ705535.1	Tontelea ovalifolia	KJ594541.1
Tovomita brevistaminea	Tovomita weddeliana	HQ331686.1	Tovomita weddeliana	AJ509219.1	Tovomita weddeliana	HQ332122.1
Tovomita choisyana	Tovomita longifolia	HQ331684.1	Tovomita longifolia	AJ312591.2	Tovomita longifolia	HQ332120.1
Tovomita mangle	Tovomita sp. vormisto	HQ331685.1	Tovomita sp.	AJ509217.1	Tovomita sp. vormisto	HQ332121.1

Tovomita umbellata	Tovomita calophyllophyll a	HQ331683.1	Tovomita sp	AJ312602.2	Tovomita calophyllophylla	HQ332119.1
Trichilia casaretti	Trichilia havanensis	JQ588362.1	Trichilia casaretti	LN833659.1	Trichilia havanensis	JQ594538.1
Trichilia elegans	Trichilia pallida	JQ626491.1	Trichilia elegans	LN833614.1	Trichilia pallida	JQ626046.1
Trichilia lepidota	Trichilia prieureana	KC627568.1	Trichilia lepidota	LN833623.1	Trichilia prieureana	KC628173.1
Trichilia silvatica	Trichilia americana	JQ588354.1	Trichilia silvatica	LN833648.1	Trichilia americana	JQ592740.1
Trichilia sp1	Trichilia martiana	JQ588364.1	Trichilia martiana	LN833625.1	Trichilia martiana	JQ592754.1
Unonopsis bahiensis	Unonopsis pittieri	GQ982122.1	NA	NA	Unonopsis pittieri	AY841661.1
Vantanea bahiaensis	Vantanea guianensis	EF135600.1	NA	NA	Vantanea guianensis	Z75679.1
Vantanea compacta	Vantanea parviflora	JQ626370.1	NA	NA	Vantanea parviflora	JQ625882.1
Vatairea heteroptera	Vatairea heteroptera	JX152603.1	Vatairea heteroptera	KC595381.1	Vatairea lundellii	AB045826.1
Vataireopsis araroba	Vataireopsis araroba	JX152613.1	Vataireopsis araroba	KC595404.1	Vataireopsis surinamensis	JQ626110.1
Vataireopsis sp1	Vataireopsis speciosa	JX152615.1	Vataireopsis speciosa	JX152689.1	NA	NA

Virola gardneri	Virola multiflor a	GQ982125.1	NA	NA	Virola multiflora	GQ981913.1
Virola officinalis	Virola nobilis	GQ982126.1	NA	NA	Virola nobilis	GQ981914.1
Vismia baccifera	Vismia bacifera	HQ331692.1	Vismia rubescens	KC709411.1	Vismia bacifera	AF518382.1
Vismia guianensis	Vismia guianensis	HQ331694.1	Vismia guianensis	HE653672.1	Vismia guianensis	HQ332126.1
Vismia latifolia	Vismia macrophylla	HQ331696.1	Vismia glaziovii	KC709410.1	Vismia macrophylla	JQ591112.1
Vochysia sp1	Vochysia hondurensis	AY572446.1	NA	NA	Vochysia tucanorum	AM235665.1
Vochysia sp2	Vochysia guatemalensis	JQ589526.1	NA	NA	Vochysia guatemalensis	JQ594493.1
Xylopia aromatica	Xylopia aromatica	KP052711.1	NA	NA	Xylopia nitida	JQ626284.1
Xylopia frutescens	Xylopia frutescens	JQ586528.1	NA	NA	Xylopia frutescens	AY841667.1
Xylopia ochrantha	Xylopia pierrei	AB924861.1	NA	NA	Xylopia pierrei	AB925687.1
Xylopia sericea	Xylopia hypolampra	KM924858.1	NA	NA	Xylopia hypolampra	AY841668.1
Zanthoxylum nemorale	Zanthoxylum fagara	JQ589092.1	Zanthoxylum fagara	HM851473. 1	Zanthoxylum fagara	KJ773993.1

Zanthoxylum rhoifolium	Zanthoxylum rhoifolium	KF555448.1	Zanthoxylum rhoifolium	KC502933.1	Zanthoxylum rhoifolium	KF561971.1
Zollernia glabra	Zollernia glabra	JX295915.1	NA	NA	NA	NA
Zollernia ilicifolia	Zollernia ilicifolia	JX152654.1	Zollernia ilicifolia	JX152670.1	NA	NA
Zollernia latifolia	Zollernia latifolia	JX295918.1	NA	NA	NA	NA
Zollernia modesta	Zollernia modesta	JX295917.1	Zollernia magnifica	JX152668.1	NA	NA
Amborella trichopoda	Amborella trichopoda	AF543721	Amborella trichopoda	NW_006500 156.1	Amborella trichopoda	L12628.2
Magnolia virginiana	Magnolia virginiana	GQ248153.2	Magnolia virginiana	DQ499097.1	Magnolia virginiana	GQ248639.1

Appendix S3. Molecular time-calibrated phylogeny

The phylogenetic tree is composed of 654 species recorded for the assemblage of adult and juvenile and two species as external group. The species were collected on South of Bahia landscapes.

CONCLUSÕES GERAIS

Os resultados deste estudo contribuíram para o entendimento dos efeitos da perda de habitat na diversidade filogenética das assembleias de plantas arbóreas juvenis e adultas da Mata Atlântica do Sul da Bahia. Dentre as principais conclusões destacam-se:

1- Através de uma meta-análise, foi encontrado um efeito geral de perda de diversidade e/ou aumento do agrupamento filogenético das comunidades de plantas frente aos distúrbios antropogênicos, sendo este efeito é independente do índice utilizado, do tipo de distúrbio e do tipo florestal.

2- Os principais resultados encontrados para o efeito de cobertura florestal na diversidade alpha de árvores foram que: i) todas as respostas filogenéticas foram lineares ou nulas; e ii) há um empobrecimento filogenético das comunidades de árvores com efeitos mais fortes no estágio juvenil, indicando a existência de um débito de extinção.

3- Por fim, os principais resultados da avaliação da beta diversidade foram que : i) a β diversidade taxonômica entre os sítios com diferentes cobertura florestais foi 14,2% maior na assembleia de adultos do que de juvenis; ii) esta mesma beta foi similar entre espécies tolerante e intolerantes à sombra no estágio adulto, e maior para os tolerantes no estágio juvenil; iii) a β diversidade filogenética entre os sítios foi similar entre os estágios ontogenéticos independente da estratégia de regeneração; iv) a distância entre os sítios foi o melhor preditor da betadiversidade entre os sítios amostrais e a cobertura florestal apenas para a β taxonômica; v) o turnover de espécies entre juvenis e adultos dentro de cada sítio amostral é bastante alto, especialmente para as espécies intolerantes à sombra; e vi) a β -diversidade filogenética aumenta com a redução da cobertura. Assim, apesar da alta substituição de espécies entre as assembleias de juvenis e adultos dentro de um mesmo sítio amostral, quando este localiza-se em paisagens com baixa cobertura, o recrutamento de espécies menos aparentadas está sendo favorecido.

Deste modo, em resumo, a redução de cobertura provoca alterações nas diversidades alpha e beta de comunidades de árvores, a diversidade alpha é afetada evidenciando um possível débito de extinção e a beta demonstrando que as comunidades futuras em sítios de baixas coberturas estarão bastante modificadas em relação a comunidade natural em paisagens conservadas.