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Na floresta ndao ha substitui¢do da vida, ela flui, e
vocé, no fluxo, sente a sua pressdo. Isso que chamam
de natureza deveria ser a intera¢do do nosso corpo
com entorno, em que a gente soubesse de onde vem o
que comemos, para onde vai o ar que expiramos.
Para além da ideia de “eu sou a natureza”, a
consciéncia de estar vivo deveria nos atravessar de
modo que fossemos capazes de sentir que o rio, a
floresta, o vento, as nuvens sao espelho da vida.

Ailton Krenak
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Drivers of vertebrate pollination network patterns in the Neotropics:
from historical biogeography to contemporary anthropogenic impacts

Resumo

As interagdes entre plantas e polinizadores vertebrados, como beija-flores € morcegos,
sao fundamentais para a manutencao da biodiversidade e dos servigos ecossistémicos nas
florestas tropicais. No entanto, os fatores que moldam a estrutura e a composicao dessas
redes de interacdes ainda estdo sendo investigados, especialmente sob uma perspectiva
integrativa que considere tanto processos historicos quanto contemporaneos. Nesta tese,
investigamos como a historia biogeografica Neotropical e as mudangas recentes nas
paisagens, particularmente a perda de habitat e a fragmentacdo florestal, influenciam
redes de interagdes entre plantas e polinizadores vertebrados. A partir de um banco de
dados composto por 67 redes de interagdes planta-polinizador, abrangendo 12 paises e
envolvendo 740 espécies de plantas e 179 espécies de polinizadores (principalmente
beija-flores e morcegos), nds exploramos como padrdes biogeograficos e mudancas
antrépicas moldam essas redes. No primeiro capitulo, mostramos que a configuragao
atual das redes ¢ fortemente influenciada por eventos biogeograficos, como o
soerguimento dos Andes, a formacdo de ilhas e conexdes historicas, além do
conservadorismo de nicho. Esses processos historicos explicam padrdes de composi¢do
e de similaridade nas interagdes ao longo das regides neotropicais. No segundo capitulo,
avaliamos os efeitos das mudangas contemporaneas nas paisagens tropicais. Os resultados
mostram que a perda de habitat € o principal fator que promove mudangas estruturais nas
redes e o turnover de espécies e interacdes. Por outro lado, a fragmentagao per se (ou seja,
independente da perda de habitat) ndo influenciou significativamente a estrutura das
redes. De forma geral, os resultados indicam que as redes de interagdes entre plantas e
polinizadores vertebrados das florestas Neotropicais sao moldadas por um balango entre
legados historicos e pressdes contemporaneas. Este trabalho reforga a importancia de
considerar tanto os processos biogeograficos quanto as dindmicas atuais da paisagem para
compreender e conservar redes de interagdes ecologicas em ambientes tropicais.

Palavras-chave: interacdes, paisagem, nicho, beija-flor, morcego



Abstract

Interactions between plants and vertebrate pollinators, such as hummingbirds and bats,
are fundamental for the maintenance of biodiversity and ecosystem services in tropical
forests. Despite this, the factors that shape the structure and composition of these
networks are still being studied, especially considering an integrative perspective that
considers both historical and contemporary processes. In this thesis, we investigated how
biogeographic history in the Neotropics and recent landscape changes, particularly habitat
loss and forest fragmentation, influence interaction networks between plants and
vertebrate pollinators. Using a database comprising of 67 plant-pollinator interaction
networks, covering 12 countries and involving 740 plant species and 179 pollinator
species (mainly hummingbirds and bats), we explored how biogeographic patterns and
anthropogenic changes shape these networks. In the first chapter, we show that the current
configuration of the networks is strongly influenced by biogeographic events, such as the
uplift of the Andes, the formation of islands and historical connections, as well as niche
conservatism. These historical processes explain patterns of species composition and
interaction similarity across the Neotropical regions. In the second chapter, we evaluated
the effects of contemporary changes in tropical landscapes. The results show that habitat
loss is the main factor driving structural changes in the networks and turnover of species
and interactions. On the other hand, fragmentation per se (measured by the spatial
configuration of forest fragments) did not show a significant effect on network structure.
Overall, the results indicate that interaction networks between plants and vertebrate
pollinators in Neotropical forests are shaped by a balance between historical legacies and
contemporary pressures. This work reinforces the importance of considering both
biogeographic processes and current landscape dynamics to understand and conserve
ecological interaction networks in tropical environments.

keywords: interaction, landscape, niche, hummingbird, bat.



Sumario

INTRODUCAO GERAL....... 12
CADTIUIO I ... ettt ettt e et s b e e tb e e esbaeetseeeebeeenaeeas 177
Biogeography of Vertebrate Pollination on the Neotropics.........c.cvevereriiiieiaiereiiiiireenecescen 18
ADSEFACE ...ttt ettt et e s e e bbbt e bt e e s it e e baeenare 199
To INEPOUCTION ...ttt ettt sbee s st st ens 20
2. Historical biogeography of vertebrate pollination in the Neotropics ........................ 233
e IMIEEROMS ...ttt et bbb st e et 277
3.1 DAt@ COMPILALION. ..ottt be e e 27
3.2. Predictors of networks structure and compoSition... ......... ......... .. ceeeeeecrereenennn. 28

3.3. Morphological traits and species-centred analysis... .............cccccccveveece e .29
3.4. Unique pairwise interactions and species's role..............c.ccoeeveeveiieicer eneen e . 30

3.5. Phylogenetic and interaction dissimilarity...............ccccccoeeve e evviveee e e .30

4. Biogeography of Vertebrate Pollination in the Neotropics ............c.ccccoceevniiiniiiinnnnn. 31
5.Similarities and divergence in network structure patterns ...............ccocccevviniiniiniennen, 333
6. Morphological biogeographic patterns in interacting species......................c.c.c..o... 38
7. Unique interactions and species's roles across Neotropical subregions........................... 40
8. Niche Conservatism in Plant-pollinator networks........................ooi .. 42
9.Concluding remarks . 45
RESEFENCES................ooceeieee et ettt ettt aae s 466
Supplementary MateTials.........cccviriiriiieciirierie sttt ettt ste et e e e enteestesatesesaessaessnesneennes 54
CAPTIULO T ...ttt et ettt et et e e e easeeaseenseenseenseens 622
Habitat loss, not fragmentation per se, drives structural changes and species turnover in
plant—vertebrate pollinator NEtWOrKS.......covvvviuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieecnnne. 63
DN 11 3 T 63
Highlights 63
1. INEroduCtioN...ciuiieiiiiiiiiiiiiiiiiiiiieitietietietietiecieciacieciessecsacsscsssssssscssssacsssnens 65
207 1 1 110 N 69

2.1 Vertebrate Pollination Interaction Dataset... ... .........cccoueeeeeieeviieeeeeeeeaee e 09

2.2 LaANASCAPE MEIVICS ... ... cuvvv ee ee et vt ae e ettt e e eet s e e 2en et ve vee 2es ernenes 2eneen0s 09
2.3. NetWOrk deSCrIDIOTS ... .. veeveu v s ee e et e ee ees et e e e e e e e een s veee sennnveeaes 7
2.4. Beta diversity Of iNEFACHIONS ... ... ... c..cce coeves et et ee e et it e e e ee e eee e eeeeeen e 73
W D L7 7o e 1 1o 1 A AP £" |

3 RESUIES .t e eeiiiiiiiiiiiiiieeiiennnennenseessessesscsssssecsecseeseesecsecesasaasssssassssssssssssnnnnnnnnee 76

B DS CUSSIOM . eeeeeeeeeeeeteeteeeeeeeeeeeeeeeeessssssesssssssssssssssssssssssssssssessessecsessssssssssaannes 80



References .84

Supplementary MaterialS. ............ooiiiiiiieieeieeieeee e e e eee e 92
CONSIDERACOES FINAIS... 107




12

INTRODUCAO GERAL !

Vocé ja parou para pensar que boa parte das frutas que chegam até nds, assim
como muitos frutos de espécies de plantas nas florestas, s6 existem porque foram visitadas
por um polinizador? Essa tarefa pode ser realizada por invertebrados, especialmente
insetos como abelhas, borboletas, mariposas e moscas. Ou por vertebrados, como aves e
mamiferos. No caso das florestas tropicais, esse trabalho nado ¢ realizado s6 por insetos:
beija-flores, morcegos e até alguns mamiferos ndo voadores sdo responsaveis por
transportar polen de uma flor para outra, garantindo que essas plantas consigam se
reproduzir ¢ manter suas populagdes ao longo do tempo. Para se ter uma ideia da
importancia desse servigo, cerca de 90% das plantas com flores das florestas tropicais
dependem de algum polinizador para completar seu ciclo de vida (Ollerton et al. 2011).
E o mais fascinante ¢ que muitos desses animais sdo capazes de percorrer longas
distancias, levando entre areas bem distantes. Isso ajuda a conectar populagdes de plantas
que, muitas vezes, estdo separadas por quilometros (Heithaus et al., 1975; Wolowski et
al., 2013). Esse servigo invisivel mantém a diversidade genética das espécies (Duminil et
al., 2007), fortalece os ecossistemas e, além disso, sustenta boa parte da biodiversidade
que faz das florestas tropicais alguns dos ambientes mais ricos do planeta.

Esses encontros entre plantas e polinizadores ndo acontecem de forma isolada na
natureza. Eles fazem parte de complexas redes de interagdo, onde cada espécie ocupa um
papel, seja como quem oferece alimento (como néctar e pdlen), seja como quem
transporta esse polen (Bascompte and Jordano, 2014). E entender como essas redes se
formam, se mantém ou se transformam ¢ essencial para o manejo do ambiente, bem como
para conservar a biodiversidade de maneira efetiva (Keyes et al., 2021). O que nés vemos
hoje nas florestas, ou seja, se uma espécie de polinizador visita determinada planta com
caracteristicas especificas e quais espécies estdo ali, ndo ¢ fruto apenas do que acontece
agora. E também resultado de uma histéria que comegou ha milhdes de anos, como o
movimento dos continentes, o surgimento de cadeias de montanhas como os Andes, ¢ a
formacgdo de conexdes entre ilhas e continentes (Barreto et al., 2023; Dellinger et al.,
2024). Tudo isso deixou marcas profundas na diversidade e nas relagdes entre plantas e

animais (Vollstddt et al., 2025).

! Optei por escrever a introdugdo geral em uma linguagem proxima da comunicagio cientifica, por ver
nesse espago a chance de dialogar com um publico mais amplo, sem abrir mao do rigor conceitual.
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Mas ndo ¢ s6 o passado que conta. A forma como transformamos as paisagens
hoje também tem um impacto enorme sobre as espécies e as interagdes que elas mantém
na natureza. Isso significa que fatores como urbanizagdo, o desmatamento ¢ a
fragmentagdo das florestas podem redefinir quem consegue sobreviver em determinado
ambiente e, consequentemente, quem interage com quem (Bonfim et al., 2023; Maruyama
et al., 2024). E, embora algumas consequéncias parecam Obvias, a verdade ¢ que ainda
nao sabemos muito sobre como essas transformagdes afetam as redes de interagdes
ecoldgicas, como a polinizagdo. Estamos vivenciando um cenério de transformacdes
ambientais intensas e aceleradas, muitas vezes imprevisiveis. Nesse contexto, nem
sempre sabemos como interacdes mutualisticas — como aquelas entre plantas e seus
polinizadores — respondem a pressdes como o desmatamento e a fragmentacao. Apesar
da existéncia de estudos importantes sobre o tema (Bomfim et al., 2018; Bonfim et al.,
2023; Ferreira et al., 2020; Libran-Embid et al., 2021; Soares et al., 2021), muitas
questdes permanecem em aberto. E tem um detalhe que nem sempre ¢ tdo 6bvio, mas que
importa bastante para entender esse quebra-cabega: a fragmentacao da paisagem ndo ¢ a
mesma coisa que simplesmente ter mais ou menos floresta (Fahrig, 2003). Uma regiao
pode até manter uma boa quantidade de mata, mas se essa vegetacdo estiver muito
dividida em pequenos pedagos isolados, isso levanta uma pergunta importante — como
serd que isso influencia a vida das espécies e as interagdes que elas mantém entre si? Até
aqui, a ciéncia ainda tinha poucas respostas sobre como exatamente a fragmentagao,
independentemente da quantidade de floresta que sobra, afeta as interagdes (Cazetta and
Fahrig, 2022) e processos como a poliniza¢do (Hadley and Betts, 2012).

Foi a partir de todas essas reflexdes que esta tese nasceu. A ideia foi entender
como as redes de interagdes entre plantas e polinizadores vertebrados como beija-flores
e morcegos sao moldadas tanto pelo que aconteceu ha milhdes de anos, quanto pelo que
estd acontecendo nas paisagens hoje. Afinal, até que ponto o passado determina as
interacoes? E quanto disso ¢ afetado pelas mudancas que fazemos no presente? Para
responder essas perguntas, construimos um banco de dados reunindo informagdes ja
publicadas sobre interagdes entre plantas e polinizadores ao longo de quase 40 anos. Isso
resultou em um conjunto de 67 redes de interagdo entre plantas e polinizadores
vertebrados, distribuidas por 12 paises do Neotropico: Brasil (32 redes), Equador (9),
Colombia (7), Costa Rica (5), México (3), Bolivia (2), Cuba (2), Porto Rico (2), Dominica
(2), Granada (1), Jamaica (1) e Peru (1). No total, essas redes incluem 740 espécies de

plantas, pertencentes a 76 familias botanicas, e 180 espécies de polinizadores vertebrados,
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como beija-flores, morcegos e algumas aves passeriformes. A partir desse banco de
dados, dividimos o nosso trabalho em dois capitulos. No primeiro capitulo, olhamos para
o passado: investigando como a histéria biogeografica, os movimentos dos continentes,
o surgimento dos Andes, a formacdo de ilhas, ajudou a moldar as redes de interagcdo que
estruturaram a polinizagdo nas florestas Neotropicais. Isso resultou no capitulo intitulado
“Biogeography of Vertebrate Pollination on the Neotropics”. No segundo capitulo,
voltamos o olhar para o presente: analisando como as mudancas na paisagem,
especificamente a perda de habitat e a fragmentacao, afetam as interagdes entre plantas e
polinizadores, o que resultou no manuscrito “Habitat loss, not fragmentation per se,
drives structural changes and species turnover in plant—vertebrate pollinator networks”.
Ao compreender como o passado € o presente se combinam para moldar as interagdes

entre plantas e polinizadores, também entendemos melhor como conservar esses sistemas.
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Abstract

In Neotropical forests, about 90% of plant species depend on pollinators to complete their
reproductive cycles, and a considerable portion relies on vertebrate pollinators, such as
hummingbirds and bats. These animals are crucial for maintaining gene flow between
plant populations, especially due to their ability to travel long distances, directly
influencing the genetic structure of plant populations. The geological history of the
Neotropics, from the breakup of Gondwana (~100 million years ago) to events like the
uplift of the Andes, the Caribbean islands formation and the Panama land bridges, played
a key role in species diversification and in shaping plant—pollinator interactions. The
independent evolution of nectar-feeding hummingbirds and bats illustrates how these
historical processes have influenced ecological interactions. To understand how
biogeographic processes shape these interactions, we analyzed an extensive dataset of
vertebrate pollination networks spanning approximately four decades of records from
Neotropical rainforests. Our goal was to understand how large-scale historical processes
influence plant—pollinator interactions. Specifically, we addressed two central questions:
(1) how do biogeographic processes affect network structure, species composition,
functional traits, and the ecological roles of pollinators across different Neotropical
regions? and (ii) are interaction patterns primarily determined by niche conservatism,
reflecting evolutionary history, or by niche evolution, driven by local adaptation? Our
results show that networks are generally nested, weakly connected, and have low
modularity, but exhibit high interaction turnover within and between subregions. The
Caribbean and Andes represent contrasting extremes: the Caribbean harbors simpler, less
diverse networks, likely shaped by island-related processes such as extinctions and low
diversification. In contrast, the Andes host richer, more complex networks, with high
species and interaction dissimilarity, reflecting rapid diversification driven by the uplift
of the mountain range. Beyond this biogeographic variation, niche conservatism emerges
as a key structuring process, indicating that evolutionary history imposes constraints on
ecological interactions. These results highlight how evolutionary and biogeographical
legacies continue to shape plant—vertebrate pollinator networks across the Neotropics.

Key-words: networks, niche conservatism, beta-diversity, hummingbird,
bat.
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1. Introduction

Nearly 90% of flowering plant species rely on animal pollination in tropical
forests (Ollerton, Winfree & Tarrant, 2011; Tong et al., 2023), within which a subset of
these species depends on vertebrates for pollination (Feinsinger & Colwell, 1978; Bawa,
1990). In the neotropics the main vertebrate pollinators are birds and mammals,
particularly hummingbirds (Trochilidae) and nectar feeding bats (Phyllostomidae)
(Fleming, Geiselman & Kress, 2009) (Figure 1). Hummingbirds visit approximately 95
plant families contributing to the pollination of around 7,000 species (Fleming &
Muchhala, 2008; Rodriguez-Flores et al., 2019; Barreto et al., 2023). Meanwhile, bats
visit around 67 plant families and are pollinators for approximately 530 plant species
(Kunz et al., 2011). Although these species represent a relatively small percentage of the
total flora, there is notable diversity in their growth habits, ranging from shrubs to trees
(Fleming, 2005). In fact, hummingbird pollination may be associated with the accelerated
rate of diversification of certain plant groups, such as Bromeliaceae, Gesneriaceae, and
Campanulaceae (Bawa, 1990; Barreto et al., 2023). Therefore, nectar-feeding vertebrates
play a crucial role in shaping the Neotropical biota and the ecological and evolutionary
dynamics of the region (Fleming & Muchhala, 2008; Dalsgaard ef al., 2021).

In general, ecological and evolutionary processes are spatially structured,
generating unique interaction and biogeographic patterns of ecological dynamics (Sexton
et al., 2009; Cumming et al., 2010). For instance, the geographic overlap between plants
and pollinators is essential for the occurrence of the interaction (Duffy & Johnson, 2017;
Phillips et al., 2020). Even plants pollinated by generalist species are constrained by the
need of their interactors to reproduce and survive (Moeller et al., 2012). Additionally,
pollinators are essential for maintaining the gene flow between distant plant populations
(Duminil et al.,, 2007). Vertebrate pollinators, such as bats and non-territorial
hummingbirds, are capable of traveling long distances foraging over many kilometers,
increasing their role in affecting plant population genetic structure (Heithaus, Fleming &
Opler, 1975; Wolowski et al., 2013). A global study revealed that the exclusion of bat and
bird pollinators would result in declines of 83% and 46% in fruit and seed production,
respectively, for some plant species (Ratto ez al., 2018). Therefore, integrating knowledge
on biogeography and pollination interaction can enhance our understanding of

macroecological patterns, allowing us to test hypotheses about the drivers of species
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distributions and ultimately guide strategies for biodiversity management and
conservation (Soberon & Peterson, 2009; Wiens, 2011).

In order to comprehend the drivers of species distributions and develop an
efficient biodiversity management (Cumming et al, 2010), networks of interaction
represent a powerful tool. Ecological networks allow us to visualize geographic patterns
and changes within biogeographic regions and across ecological gradients (Montoya &
Galiana, 2017; Tylianakis & Morris, 2017). Over the last few decades, a significant
advance in our understanding of pollination networks (Martin Gonzalez et al., 2015;
Zanata et al., 2017; Maruyama et al., 2018) has revealed latitudinal patterns (Rech et al.,
2016), and enable comparisons across tropical and temperate environments (Schleuning
et al., 2012; Sonne et al., 2020), climatic regimes (Dalsgaard et al., 2013), and biomes
(Araujo et al., 2018). These studies highlight how environmental conditions, both
contemporary and historical, may affect the evolution of interactions, including the
evolution of specific traits connected to specific environments (Herrera, 2002; Lanuza et
al., 2023). For instance, wind pollination generally evolves under unstable conditions,
such as temperate regions with historically and currently fewer stable climates
(Ackerman, 2000). In contrast, in dense and closed areas, like tropical forests, the
probability of pollination by wind decreases drastically, increasing the importance of
biotic pollination (Regal, 1982; Rech et al., 2016). Therefore, to further enhance our
understanding of how species interactions are shaped by environmental conditions, it is
crucial to investigate how shared biogeographic processes shaped the evolution of
ecological interactions and their network structure, shedding light on the adaptive and
evolutionary processes that sustain ecosystem interactions.

In the Neotropical region, species that overlap their distribution probably have
experienced similar historical geographic events, however their response to these events
might be different, originating distinct patterns of interaction in the community and
consequently different network structures. There are two main evolutionary processes
hypothesized to explain species distribution range and, consequently, their coexistence:
niche conservatism and niche evolution (Wiens & Graham, 2005). The former process,
i.e. niche conservatism, reflects the retention of ancestral traits in species, even in the face
of environmental changes, resulting in greater niche overlap (Wiens & Graham, 2005).
The latter process, i.e. niche evolution, on the other hand, reflects changes in species'
responses to environmental alterations, leading to greater specialization in resource use

and, consequently, less niche overlap. Species that faced similar historical contingencies
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may converge or diverge between niche conservatism and niche evolution composing
distinct proportions of the interactions in one community (Wiens & Graham, 2005; Wiens,
2011). This study synthesizes four decades of research on plant—vertebrate pollination
interactions in Neotropical rainforests to examine how shared biogeographic history has
shaped these interactions. We characterize how biogeographic processes influence
network structure, species turnover, interaction turnover, the distribution of key
morphological traits, and the role of interacting species in linking network interaction
patterns predicted by niche conservatism or niche evolution. Our study aims to answer
two overarching questions: (i) How do Neotropical biogeographic processes (such as the
biogeographic history of Caribbean islands, area colonization, the uplift of the Andes, and
the emergence of the Isthmus of Panama) shape network structure, composition, trait
distributions, and species functional roles across regions? (ii) Are interaction patterns
constrained by evolutionary history (niche conservatism) or shaped by local adaptation
(niche evolution)? We expect biogeographic processes to be reflected in a degree of
variation in network topology. Although certain structural patterns may be conserved,
regions with distinct biogeographic histories are likely to exhibit differences in network
configuration, including variation in levels of nestedness, modularity, connectance, and
indirect interactions. These differences are expected to reflect both variation in species
composition and the ecological and evolutionary contexts of each region (Dalsgaard et
al., 2021; Vollstadt et al., 2025). Similarly, the distribution of functional traits — such as
bill length, corolla depth, and other morphological features mediating interactions, is also
expected to vary across biogeographic regions. Additionally, we expect that if niche
conservatism is the dominant process, phylogenetically similar species will maintain
similar ecological interactions (that is, tand to interact with same species), even when
occurring in different biogeographic regions (Goémez, Verdi & Perfectti, 2010; Peralta,
2016). After dispersing outside their center of origin, species are likely to retain ancestral
traits that shape how and with which partners they interact. In such cases, when their
original partners are absent, species may exhibit interaction turnover but with low
rewiring, interacting instead with ecologically similar partners. Conversely, if interaction
dissimilarity is not related to the phylogenetic dissimilarity of the species involved, this
suggests that niche evolution, that is, the divergence of ecological traits over time, is the
main driver. Under this scenario, even closely related species may form different

interactions due to local adaptation.
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Figure 1: Species of birds and bats visiting flowering plants in the Neotropics. In (a)

Eupetomena macroura; (b) Chrysolampis mosquitus; (c) Chlorostilbon lucidus; (d)
Coereba flaveola; (e) Erophylla sezekorni; (d) Glossophaga comissari and (f)
Phyllonycteris poeyi. The bird and bat photographs are respectively authored by Joao

Victor Fernandes, and merlintuttle.org

2. Historical biogeography of vertebrate pollination in the Neotropics

The equatorial positioning of the Neotropics, coupled with its ancient geological
history, has given rise to a remarkable diversity of environments, climates, and
topographies. The geological history of the Neotropics began with the breakup of
Gondwanaland approximately 100 million years ago (Mya) during the Mesozoic, which
led to the complete isolation of South America from Africa and set the stage for distinct
evolutionary trajectories on each continent (Sanmartin & Ronquist, 2004). Consequently,
the Neotropical biota evolved under a spatially and temporally diverse landscape (Hoorn
et al., 2010; Antonelli & Sanmartin, 2011). This diversity is reflected in its classification
into three primary subregions — Antillean, Brazilian, and Chacoan — along with two
transition zones: the Mexican Transition Zone, bridging the Nearctic and Neotropical
regions, and the South American Transition Zone, connecting Lowland South America to
the Andes (Morrone, 2014; Morrone ef al., 2022). In this study, we take advantage of this
characterization to establish a framework for identifying shared patterns of ecological

interactions within each biogeographic region and assessing whether distinct historical
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processes have led to divergent network structures across regions. If species within a
given region have been shaped by similar geological and climatic histories, we might
expect ecosystems to converge in the properties exhibited by their interaction network
structure. These dynamic landscapes have undoubtedly spurred species diversification
(Barreto et al., 2023; Dellinger et al., 2024), but this approach allows us to disentangle
how biogeographical history has also influenced the architecture of flowering plants and
vertebrate pollinators across the Neotropics, a hallmark of Neotropical biodiversity. To
understand how biogeographical history has influenced the evolutionary pathways of
species interactions in the Neotropics, we first present the major geological events known
to have shaped the Neotropical Biota.

The first key aspect of this history is the breakup of Gondwanaland, which
profoundly influenced the independent evolution of the main vertebrate pollinators in the
Neotropics (Giannini & Velazco, 2020; Fleming & Muchala, 2008). Within the
Neotropics, nectar-feeding bats evolved independently in two subfamilies
(Lonchophyllinae and Glossophaginae), illustrating convergent adaptations to
nectarivory (Datzmann, von Helversen & Mayer, 2010). Hummingbirds, however, may
have originated in Eurasia (McGuire et al., 2014). After their diversification in South
America, some hypotheses suggest that hummingbirds went extinct in both Eurasia and
North America (McGuire et al., 2014). Consequently, following their establishment in
South America, hummingbirds recolonized North America and expanded their range into
the Caribbean islands. During the Cenozoic, the emergence of major land connections,
such as the Isthmus of Panama, the Antillean archipelago, and the uplift of the Andes,
facilitated dispersal and gene flow, thereby shaping the ecological interactions and niche
breadth of both bats and hummingbirds (Sexton et al., 2009).

A pivotal land bridge was the formation of the Isthmus of Panama (~3 Mya),
which facilitated the Great American Biotic Interchange (GABI), enabling the movement
of flora and fauna between North and South America (Davalos, Velazco and Rojas, 2020).
Although it may not have been the main driver for the colonization of nectarivorous bats
and hummingbirds in North America, due to a possible earlier colonization during periods
of low sea level (overwater dispersal) prior to the uplift of the Isthmus (McGuire et al.
2014; Morgan et al. 2023; Davalos, 2009), this geological event still had important
consequences. For hummingbirds, it opened a route for expansion into Central and North
America, promoting rapid diversification and colonization of new habitats (Marshall et

al., 1982; McGuire et al., 2014), potentially leading to homogenization among regions.
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Similarly, for bats, it facilitated adaptation to diverse climatic zones in North America
and contributed both to increased species richness and the development of ecological
specialization (Woodburne, 2010; O’Dea et al., 2016). In both groups, niche evolution
may have played a role in enabling adaptation to novel environments and diversification
of ecological interactions, while niche conservatism may have reinforced allopatry in
geographic distributions and driven species turnover (Holt & Gaines, 1992; Peterson,
Soberon & Sanchez-Cordero, 1999; Wiens & Graham, 2005; Wiens, 2011).

Nectarivorous bats and hummingbirds likely expanded into the Caribbean islands
through overwater dispersal (Rojas et al., 2016). For bats, this expansion may have been
facilitated by exceptionally low sea levels during Miocene transitions, which enabled
two-way biotic exchange between the South American continent and the Caribbean
islands (Davalos et al.). In the Caribbean, bat diversity is comparatively low, likely as a
result of high extinction rates driven by climate fluctuations and sea-level changes,
particularly during deglaciations (Davalos & Russell, 2012), and further influenced by
the species—area relationship (Stevens, Weber & Villalobos, 2020). Hummingbirds, in
turn, appear to have colonized the Caribbean more recently, around 5 Ma. Their low
diversity in the region may be due to a combination of extinction events and the relatively
short time since their arrival, which may have limited the group’s opportunity to achieve
the diversification peaks observed in other regions (McGuire et al., 2014).

Even before establishment of the land bridges, the uplift of the Andes, beginning
around 65 Mya in the Late Cretaceous, profoundly shaped South America’s landscape,
climate, and biodiversity (Hoorn et al., 2010; Antonelli & Sanmartin, 2011), creating
altitudinal gradients and diverse niches that promoted adaptive radiations among
nectarivorous bats and hummingbirds (Baker et al., 2003; Datzmann et al., 2010;
McGuire et al., 2014). These organisms adapted to varying resources and climates, with
hummingbird pollination becoming more prevalent in montane forests than in lowland
rainforests, likely due to temperature constraints on ectothermic pollinators (Classen et
al., 2015; Dellinger et al., 2023). The Andes acted as biogeographic barriers, promoting
allopatric speciation and diversification in clades such as Brilliants, Coquettes, Hermits,
Mangoes, Bees, and Emeralds (McGuire et al., 2014) alongside adaptations in nectar
plants, fostering co-evolution and evolutionary divergence (Graham et al., 2006;
Hinkelmann & Schluter, 2018).

The uplift of the Andes influenced the diversification of phyllostomid bats,

including nectarivorous species (Villalobos & Arita, 2010). Patterns of bat richness reveal
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a strong geographical gradient: regions such as the southwestern United States, northern
Mexico, and northern Argentina and Chile exhibit low species richness, whereas the
Amazon Basin harbors high diversity, with the tropical Andes representing the peak of
bat richness (Villalobos & Arita, 2010), particularly at mid-elevations (Stevens, Weber &
Villalobos, 2020). However, bat richness declines sharply with increasing altitude, as
observed in the Peruvian Andes, where only 10 out of 101 species occur above 3,200 m
(Graham, 1983). In clear contrast to hummingbirds, which tend to become more
prominent in montane forests, bats show a reduction in species richness with altitude,
likely due to physiological constraints and niche conservatism (Stevens, Weber &
Villalobos, 2020). These patterns reflect complex interactions among ecological,
geographic, and historical factors, including range cohesion, phytogeographic domains,
and climatic history (Villalobos & Arita, 2010).

In this study, to assess the biogeographical mediated network patterns, we
consider four neotropical subregions: a simplification of Morrone's (2014) classification
(Figure 2). In this simplified classification, we merged the Brazilian and Chacoan regions
to form Lowland South America, extending to the southern portion of the Isthmus of
Panama. Additionally, the Mexican transition zone was integrated into Central America,
giving rise to what we refer to as the North and Central America subregion. The South
American transition zone, here described as the Andes, encompasses the Andean
mountains of South America. Finally, we have the oceanic islands of the Antilles, referred
to as the Caribbean subregion. This classification, suggested in a biogeographical network
study conducted by Dalsgaard et al. 2021, also proved suitable for the interaction
networks addressed in this study and reflect the irradiation time of nectar feeding bats and

hummingbirds.
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Figure 2: Neotropical moist forest map divided into four biogeographical subregions: 1)
Andes in light green; ii) Caribbean in light orange; iii) Lowland South America in light
purple; iv) North and Central America in light pink. The white represents the area not
covered by tropical moist forest. The dots represent networks sampled on the area, and
the color dot represents the pollinator group used to build the network: Trochilidae
networks are in light green; Phyllostomidae are in dark blue and networks with both
groups are in bluish green; lastly, networks with Trochilidae and other birds are in white.
The pie charts represent the species richness for each biogeographical subregion. Animal
silhouettes are from PhyloPic (URL: https://phylopic.org/) under an open access license

3. Methods

3.1. Data compilation

To investigate network biogeographical patterns, we gathered data on pollination
interactions involving flying vertebrates in neotropical rainforests. We conducted an
extensive search across four available databases: Web of Life (Fortuna et al., 2014),
Interaction Web Database (http://www.ecologia.ib.usp.br/iwdb), Atlantic Pollination
(Iamara-Nogueira et al., 2022), and Neobat Interactions (Florez-Montero et al., 2022).
Additionally, we searched in DRYAD (https://datadryad.org/), Scopus, and Web of

Science using the following terms: "plant-pollinator network," "pollination network,"
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"floral visitation network," or ("mutualistic interaction network" AND pollinator) AND
"tropical." We only included empirical studies conducted in tropical moist forests that
examined interactions at the community level.

The search returned a dataset comprising 67 pollination networks (lato sensu -
including floral visitor networks), belonging to 47 different studies conducted between
1979 to 2019 (table S1). These networks span twelve Neotropical countries: Brazil (32),
Ecuador (9), Colombia (7), Costa Rica (5), Mexico (3), Bolivia (2), Cuba (2), Puerto Rico
(2), Dominica (2), Grenada (1), Jamaica (1), Peru (1).

3.2. Predictors of networks structure and composition

To compare network structure patterns accross biogeographic regions, we
examined network nestedness, modularity, connectance, the proportion of indirect links
in the networks, and interactions beta diversity. We computed network nestedness using
the NODF index (Almeida-Neto et al., 2008), with values ranging from 0 (no nestedness)
to 100 (perfect nestedness), and modularity using Stephen Beckett’s algorithm (2016),
which measures the formation of cohesive subgroups of species, ranging from 0 (no
modules) to 1 (perfectly modular). Additionally, we computed the connectance,
representing the proportion of observed interactions compared to possible interactions.
To assess statistical significance, we generated 1000 null models using the Patefield
algorithm, and calculated z-scores to compare observed values against these models (see
details in supplementary materials). To estimate the potential for indirect effects in plant—
pollinator networks, we first used matrix A to generate a square matrix B, in which all
species (plants and pollinators) appear in both rows and columns, with row i and column
i referring to the same species. While matrices A and B contain the same interaction
information, matrix B is structured to enable the matrix operations required for estimating
indirect effects. Each row of B was then standardized to sum to one, producing the matrix
B’. Using B’, we computed the total effects matrix by using T=(I- RB’)! , where I is the
identity matrix with the same dimensions as B’, and R is the probability (or dependence)
between interacting species. In our analysis, R was kept constant at 0.95 (Gama et al.
2025; Pires et al., 2020). The matrix T summarizes the potential for both direct and
indirect effects to propagate through the network, under the assumption that effects decay
along longer pathways.

The overall potential for indirect effects in a network was then calculated as:

U= Z?]Z?’ t; (1—=Db'y)/ X¥ Z?’ tij
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where #; comes from the total effects matrix T and represents the potential
influence of the species in column j on the species in row i. The term 1 - b; removes the
contribution of direct interactions. In addition, T allows the estimation of each species’
influence in propagating both total effects (7ou) and purely indirect effects within the
network (see Pires et al., 2020 for details). This provides a measure of how much a species
affects others through paths of varying lengths, from direct connections to longer indirect
chains.

We assessed the dissimilarity among networks within the same biogeographic
region (i.e., we compared the dissimilarity between pairs of networks belonging to the
same biogeographic subregion, excluding comparisons between different regions, as
higher dissimilarity would already be expected in those cases). Specifically, we assess
four components: dissimilarity in species composition within communities (fs);
dissimilarity of interactions (Bwn), which is subdivided into two components: rewiring
(Pos), representing the dissimilarity of interactions established between species common
to both networks; and turnover (fBsr), representing the dissimilarity of interactions due to

species substitution (Novotny, 2009; Poisot et al., 2012).

3.3. Morphological traits and species-centred analysis

To analyze how the mean trait values of interacting species vary according to the
biogeographic area, we collected the traits associated directly or indirectly with the
pollination process. First, the species names of plants and animals of networks were
verified and, when necessary, updated using the taxize and flora packages (Chamberlain
et al. 2020; Carvalho, 2020), and also the Plant of the World online repository

(https://powo.science.kew.org/). For hummingbirds, we collected body mass, bill length

and curvature (Dalsgaard et al. 2021; Tobias et al. 2022). For flowers, we compiled
corolla length or petal length in the case of some tubular flowers (Dalsgaard et al. 2021;
lamara-Nogueira et al. 2022). We also classified each species of hummingbird according
to the nine clades (McGuire et al. 2014). Finally, for bats, we compiled body mass
(Gongalves et al. 2018; Iamara-Nogueira et al. 2022; Garcia-Garcia et al. 2014; Farneda
etal. 2015; Mancina et al, 2005; Ganon et al. 2005; Tschapka, 2005; Molinari et al. 2014).
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3.4. Unique pairwise of interactions and species's roles

To understand the role of species and their positions within the networks, as well
as their prevalence as central species in biogeographic regions, we calculated two
centrality metrics: (i) closeness that reflects how close a species is to all other species in
the network, representing its potential for efficient information or resource transfer and
(i1) betweenness that captures the extent to which a species acts as a bridge or
intermediary in the network, highlighting its role in connecting different species or
groups.Using these metrics, we assessed the frequency at which species exhibited high
levels of centrality in each network within the subregions.

Moreover, to assess the contribution of specific interactions to the biogeographical
structure of pollination networks, we built a meta-network based on the 67 local networks
compiled in this study. In this meta-network, nodes represent unique species interactions
(i.e., plant—pollinator pairs), and links connect each interaction to the local networks
where it occurs, forming a bipartite structure between interactions and local networks
(Emer et al., 2018). A link indicates the presence of a given interaction in a particular
local network. Based on this meta-network, we calculated centrality metrics to quantify
the relative importance and distribution patterns of interactions across the Neotropics.
Specifically, we computed degree centrality, which reflects how widespread an
interaction is (i.e., the number of local networks where the interaction occurs), and
betweenness centrality, which indicates the extent to which an interaction connects
different networks, acting as a bridge between biogeographical regions or ecological
contexts.

3.5. Phylogenetic and interaction dissimilarity

Finally, to evaluate whether the phylogenetic composition of communities
influences the establishment of plant-hummingbird interactions, and whether these
patterns are shaped by niche conservatism or niche evolution, we quantified phylogenetic
dissimilarity between networks for both groups. The plant phylogeny was derived from
the GBOTB.extended tree (Jin & Qian, 2019) using the V.PhyloMaker package, while the
hummingbird phylogeny followed McGuire et al. (2014). Bat phylogeny was not included
due to insufficient data for nectar-feeding bats, which would be necessary to ensure
reliable estimates.

From these phylogenies, we generated pairwise phylogenetic dissimilarity

matrices for plants and hummingbirds using cophenetic distances, defined as the sum of
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branch lengths connecting two taxa on a phylogenetic tree. These distances were
combined with species presence—absence data from the networks to calculate
phylogenetic beta diversity via the “comdist” metric (Webb, Ackerly & Kembel, 2008),
which measures phylogenetic turnover between communities.

We then integrated the resulting phylogenetic dissimilarity matrices with the
interaction dissimilarity matrices described earlier. To account for biogeographical
structure, networks were grouped into four bioregions: Lowland South America, Andes,
Caribbean, and North and Central America. The relationship between phylogenetic
dissimilarity and interaction dissimilarity was tested using linear models and linear
mixed-effects models, with bioregion as a random effect, for each component of
interaction dissimilarity (Bwn, Bst, and Pos), considering plants and hummingbirds

separately. Detailed methods are provided in the supplementary material.

4. Biogeography of Vertebrate Pollination in the Neotropics
Across the 67 Neotropical plant-vertebrate networks we found variation in species
richness and interaction patterns. Species richness varies both within these networks and
across the four Neotropical subregions, with the lowland South America region exhibiting
the highest richness, followed by the Andes (see Table 1). The number of interactions
follows the same trend as species richness (Table 1).
Table 1: Species richness and total number interactions distributed in four subregions of

Neotropics in 67 plant-vertebrate interaction networks.

Andes Caribbean Lowland South North & Central
America America

Bat richness 10 7 24 8
Hummingbird 128 11 223 49
richness
Plant richness 325 64 596 143
Other bird species - - 27 -
Total species richness 463 82 870 200
Total number of 958 92 1505 276
interactions

Number of networks 14 8 37 8
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These networks include a total of 740 plant species distributed across 76 botanical
families. We found significant variations in the main plant families pollinated by
vertebrates, both among different groups (hummingbirds and bats) and subregions (Figure
3). For bats, we observed that the most prevalent visited families were Fabaceae, followed
by Malvaceae, and Bromeliaceae. However, when considering the different subregions,
the patterns change: in the Andes, the most visited family is Campanulaceae; while in the
Caribbean and North and Central America subregion, interactions are predominantly with
flowers of Malvaceae. In the South America region, Fabaceae predominates among
interactions. Also, Bawa (1990) indicated other botanical families commonly visited by
bats in the tropics, such as Bombacaceae and the genera Passiflora in Passifloraceae,
Parkia (subfamily Mimosaceae) and Bauhinia (subfamily Caesalpiniaceae) in Fabaceae.

As for hummingbirds, the most frequently visited families are Bromeliaceae,
Gesneriaceae, and Rubiaceae. We also noticed variations in plant families visited by
subregion, with Ericaceae being the most visited family in the Andes; Bromeliaceae in
South America; and Rubiaceae in the Caribbean and North & Central America subregion.
A similar pattern was recorded in another study, with the most frequently visited families
being Acanthaceae, Bromeliaceae, Gesneriaceae, Marantaceae, Musaceae, Rubiaceae,

and Zingiberaceae (Bawa, 1990; de Oliveira et al., 2025).
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Figure 3: Percentage of interaction events (visits) by bats and hummingbirds to different
botanical families in 67 plant-pollinator networks across the Neotropics. (a) Most
representative plant families across all networks. (b) Most frequently visited plant
families in each Neotropical subregion (Andes, Lowland South America, Caribbean,
North & Central America). Colors represent plant families, indicating their relative
frequency of visits.

Our database encompasses a variety of bird and bat species that interact with
plants across the Neotropical subregions. The networks included 179 species of
vertebrates, of which 135 are Trochilidae species, 19 belong to other groups of birds
(such as Thraupidae, Icteridae, Cotingidae, and Picidae and 25 are bat species. The most
common bird species interacting with plants are from the family Trochilidae (135
species), while 18 species belong to other bird families (Thraupidae, Icteridae, Cotingidae
and Picidae). Phyllostomidae was the only bat family interacting with plants. From this
compilation, a pattern emerges showing that Caribbean networks exhibit lower species
richness both for plants and pollinators and fewer interactions, as well as a smaller number
of networks documented in the region. These patterns may be related both to the lower

inherent richness characteristic of this insular region and to potential undersampling.

5. Similarities and divergence in network structural patterns

The plant-pollinator networks in the Neotropics are generally nested (figure 4a).
Following this pattern, the networks present an average high proportion of indirect effects
(figure 4b), that is, interactions occurring through intermediary species rather than direct
contact between the two species involved. On the other hand, we did not find an evident
pattern of modularity, as most of the Z-modularity values are below zero, indicating that
the observed modularity is less than expected by chance (figure 4c¢). The connectance was
similar among subregions, except for the Caribbean networks, which exhibit highest
connectance values (figure 4d). Pollination networks are expected to exhibit a nested
structure (Bascompte et al., 2003). The nested pattern is observed when specialist species
interact with a subset of species that generalist species also interact with (Bascompte &
Jordano, 2007). This results in the presence of highly connected generalist species, which
lead to the proliferation of paths, especially indirect ones (Guimaraes et al., 2017; Cosmo
et al., 2023). Consequently this explains our results for nestedness and the proportion of
indirect paths, as these metrics are correlated (Guimaraes et al., 2017).

Overall, the network structure varied among the subregions for all predictors

evaluated (Table S1-Table7). Although the networks are predominantly nested across all
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subregions, the degree of nestedness was different between the Andean and Caribbean
subregions (Figure 4a). Remarkably, Andean networks exhibit higher nestedness
compared to Caribbean, while the opposite is observed in terms of modularity. The degree
of nestedness is, in some cases, positively correlated with species richness (Bascompte et
al., 2003). Thus, the observed pattern in Andean ecological networks might be explained
by the high species richness in this subregion. The Andes are distinguished for hosting
the highest average number of plant and pollinator species (Andes= p 33.5; Caribbean=
p 10.6; lowland South America = p 25.8 and North and Central América = p 25.3)
potentially fostering the coexistence between generalist and specialist species. This
coexistence, in turn, may contribute to a more pronounced nestedness than observed in
Caribbean networks (Bastolla et al., 2009). It is noteworthy that, in the studied networks,
the South America and North America subregions, also exhibited a considerable degree
of nestedness, with high variance in the lowlands of South America (Figure 4a). In
addition, the observed patterns in network connectance might also be explained by species
richness in both cases, referring to the low connectance values found in the Andes and the
high values in the Caribbean. Such a pattern is expected, as this index calculates the
number of interactions performed among all possible ones, and there is a tendency for
this value to increase with decreasing species richness (Olesen & Jordano, 2002). In the
case of the Caribbean, referring to the high connectance values, is due to the increased
probability of performing all possible interactions in a species-poor network

The structural distinctiveness of Caribbean networks may be linked to island-
specific processes, such as those mentioned earlier, including extinction events during
periods of sea-level rise and species—area relationships, which have been shown to be
important factors limiting species richness (Déavalos, 2009; Stevens et al., 2020) and,
consequently, shaping the structure of interactions. The Caribbean subregion is
recognized as a biodiversity hotspot due to its remarkable levels of endemism. Although
overall species diversity is lower in the Caribbean compared to the Andean subregion, the
islands host a higher proportion of endemic species (Myers et al., 2000). This pattern is
also evident in the groups analyzed here, where interacting hummingbird species are
exclusively endemic to the Caribbean or to specific islands. Examples include
Anthracothorax dominicus, restricted to certain islands in the subregion, and Trochilus

polytmus, endemic to Jamaica. A similar trend is observed for bats, with species such as
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Erophylla sezekorni and Phyllonycteris poeyi among the endemics recorded in our

networks (Mancina, 2010; Simmons, 2005).
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Figure 4: Values of four network metrics according to the biogeographical subregion
(Andes, Caribbean, South America and North-Central America). We show the Z-score for
the nestedness (a); the proportion of indirect effects cascading on the network (b); Z-score
for modularity (c) logarithmic of the connectance (d). The letters at the top of each graph
represent the results of pairwise comparisons conducted through Tukey's test, where
different letters indicate statistical difference (p < 0.05).

When combining all the networks' metrics into a Principal Component Analysis
(PCA), we observed a high overlap between subregions (Figure 5a; Table S5). However,
the Caribbean occupied a much smaller space, indicating how this subregion differs
significantly from the others, specially from Andes and Lowland South America (Figure

5b).
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Figure 5: a) PCA graph combining the four-network metrics for the biogeographical
subregions. b) First component of PCA for each subregion; Andes are in light green;
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Caribbean in orange; Lowland South America in light purple; North and Central America
in light pink. The letters at the top of (b) graph represent the results of pairwise
comparisons conducted through Tukey's test, where different letters indicate statistical
difference (p < 0.05).

For a more comprehensive understanding of variations in network structure, we
examine their dissimilarity through beta-diversity of interactions. When assessing the
dissimilarity among networks within a subregion, we observe that, in general, these
networks exhibit relatively high dissimilarity (Figure 6). Both fw~ and Bs maintained
elevated values in almost all subregions. Even though the compared networks originate
from the same subregion, they display considerable distinction in terms of total
interaction dissimilarity (Bwn) - values close to 1 (see Figure 6). This dissimilarity
appears to be primarily associated with differences in community composition (fs) and,
consequently, species turnover (fsr), as these two components are positively correlated
(Poisot et al., 2012). Additionally, in communities where common species exist, they
appear not to interact similarly, as evidenced by high values of Bos. High Bos values
reflect a low number of shared interaction pairs between networks, both in the general
context of Neotropical networks and within subregions (Fig. 6).

When comparing the four subregions, the Caribbean exhibited the lowest values
of interaction rewiring (Bos), close to zero. This indicates that, when the same species co-
occur across networks, they tend to maintain very similar interaction patterns, showing a
strong conservation of ecological roles. Despite this, the total dissimilarity of interactions
(Bwn) and the components related to species turnover (fs and fsrt) remain high. This
pattern suggests that interaction dissimilarity in the Caribbean is primarily driven by
species replacement rather than by changes in the way shared species interact. This is
consistent with the fact that while vertebrate species like Orthorhyncus cristatus, present
in three out of five hummingbird networks, and Monophyllus redmani, present in all bat
networks, are widespread across islands, plant species composition varies substantially.
This leads to high species turnover and, consequently, high dissimilarity of interactions

despite the ecological consistency among shared vertebrate species.
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Figure 6: Dissimilarity of interactions in the networks belonging to the Neotropical
subregions. The dissimilarity is represented in boxplot graphs by indices: Dissimilarity in
species composition within communities (fs); dissimilarity of interactions (Swn), which
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is subdivided into two components: rewiring (fos), representing the dissimilarity of
interactions established between species common to both networks; and turnover (fBsr),
representing the dissimilarity of interactions due to species substitution. The line graphs
represent the sharing of pairwise interactions between local networks belonging to the
Neotropical subregions. The number of networks sharing a unique interaction varies from
1 (when the pair occurs in only one local network) to 8 (when the pair is shared across 8
networks).

6. Morphological biogeographic patterns in interacting species

Hummingbird traits varied among subregions (Table S6-S9). We observed a
pattern where hummingbirds from the Andes differed from the Caribbean subregion by
presenting longer and less curved bills (Figure 7a-b). Additionally, hummingbirds from
the Caribbean subregion showed a smaller body size (Figure 7c). On the contrary, bat
traits were similar between subregions (see Figure 8a; Table S10).

Interestingly, when looking at the average corolla length per biogeographic
region, the differentiation is not as clear as it is for hummingbird's bill (Figure 8b; Table
S11). It may be a consequence of the interaction effects for plants combined with the
result of net selection. For instance, plants of the genus Callianthe (formerly classified as
Abutilon, Malvaceae) and the species Siphocampylus sulfureos E.Wimm.
(Campanulaceae), present mixed pollination syndromes between bats and hummingbirds,
being effectively pollinated by both groups. Consequently, it may generate intermediate
characteristics as these animals will exert different selective pressures. The species
Callianthe rufinerva (A. St.Hil.) Donnel (formerly Abutilon rufinerve), during the night,
presents flowers fully open (shaped like a bowl) to receive visits from bats; and during
the day, the flowers narrow their opening, adopting a bell shaped to receive visits from
hummingbirds. At dusk, the flowers open again, repeating these changes throughout the
period in which they are available to pollinators (about 30 hours) (Buzato, Sazima &
Sazima, 1994). On the other hand, local adaptation within one species of plant may help
in generating more variation inside each subregion. For instance, differences in
hummingbird assemblages in the Caribbean islands appear to influence the characteristics
of flowers, leading to morphological variations within the same plant species (i.e.
Heliconia bihai), across different islands. On the island of Hispaniola, where Eulampis
Jjugularis is found, a morphological similarity between Heliconia bihai and H. caribaea
is observed, which coincides with the morphology of this hummingbird. Therefore, the

similarities between the flowers of these Heliconia species may result from floral


https://www.zotero.org/google-docs/?dKM3GT
https://www.zotero.org/google-docs/?dKM3GT

39

convergence driven by selection mediated by a common pollinator species, which varies
according to the presence of the pollinator (Martén-Rodriguez et al., 2011). The same is
true for plant species pollinated by different functional groups, throughout its distribution

area, which the consequence could be the formation of a geographic mosaic (Thompson,

1994).
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Figure 7: Differences in hummingbird traits between biogeographical subregions
(Andean, Caribbean, Lowland South America and North & Central America). The figure
(a) represents the average bill length; (b) average bill curvature; (c) average body mass;
(d) PCA graph combining the three hummingbird traits for each biogeographical
subregion, and (e) the first component of PCA for each subregion; Andes are in light
green; Caribbean in orange; Lowland South America in light purple; North and Central
America in light pink. The letters at the top of each graph (figures (a) to (d)) represent
the results of pairwise comparisons conducted through Tukey's test, where different letters
indicate statistical difference (p < 0.05). Hummingbird silhouettes are from PhyloPic
(URL: https://phylopic.org/) under an open access license.
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Figure 8: Differences in flower and bats traits between biogeographical subregions.
Where in (a) we represent the average bat's body mass; and in (b) the average corolla
length in biogeographical subregions: Caribbean in orange; Lowland South America in
light purple; North and Central America in light pink. The letters at the top of each graph
represent the results of pairwise comparisons conducted through Tukey's test, where
different letters indicate statistical difference (p < 0.05). Bat and flower silhouettes are
from PhyloPic (URL: https://phylopic.org/) under an open access license.

7. Unique interactions and species's roles across Neotropical subregions

When evaluating species roles, we found that in networks from North and Central
America, as well as the Caribbean, no species stood out as central (that is, higth closeness
or betwenness centrality). However, in terms of closeness centrality, Thalurania
glaucopis stood out in lowland South America, while in the Andes, Coeligena wilsoni.
Regarding betweenness, 7. glaucopis remains prominent in lowland South America. In
the Andes no species showed high betweenness centrality values, although the genus
Coeligena stands out. Notably, no bat species emerged as central, likely due to the limited

number of bat networks in the dataset. Species with high centrality values play a crucial
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role in the structure and stability of the network. Identifying these central species can help
determine their importance to the network (Martin Gonzalez, Dalsgaard & Olesen, 2010)
and provide tangible information on which species should be conserved to ensure the
maintenance of the network. For example, species centrality has been used in the field of
landscape ecology to understand which species and specific pairwise interactions are
important for connecting habitat fragments (Emer et al., 2018).

We also assessed the role of species in interaction pairs through a metanetwork
approach. Specifically, when evaluating interaction pair centrality, we observed variations
compared to previous analyses that focused solely on centrality frequency. Considering
closeness centrality, the interaction pair with the highest value was between Thalurania
glaucospis and Aechmea nudicaudalis. On the other hand, using the betweenness
centrality, the interaction pair with the highest value was Galucis hirsutus and

Centropogon cornutus (Figure 9).
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Figure 9: Section of the Neotropical metanetwork of vertebrate pollinators, highlighting
in red the two pairwise interactions Thalurania glaucopis-Aechmea nudicaudalis and
Galucis hirsutus-Centropogon cornutus, which stand out in terms of closeness and
betweenness, respectively. Pink dots represent the interaction pairs, while white dots
indicate the local networks.

The assessment of species centrality at different scales reveals roles of species and
their pairs, both locally and regionally. For the closeness metric, a species that connects

to many other nodes within its networks may indicate potential generalism in its
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interactions. Frequent observation of this pattern in local networks suggests that the
species interacts with a wide range of partners, reflecting generalism across various local
contexts. The betweenness metric, on the other hand, highlights a structural role within
the network by connecting different parts of local networks. Species with high
betweenness play a crucial role in linking distinct subgroups within the network,
maintaining the integrity and flow across these sections.

At the metanetwork level, the role of species highlighted by closeness is similar
to that observed in local networks. Achieving a high closeness value requires the species
and its interaction pair to be present in multiple local networks, indicating generalism
related to broad distribution and diverse habitats. This pattern explains the recurrent
presence of species such as Thalurania glaucopis, which, due to its generalist nature and
wide distribution, exhibits high closeness values at both local and regional scales. In the
context of the metanetwork, the betweenness metric underscores a structural role in
connecting different parts of the network on a regional scale. Species with high
betweenness are found in distinct networks that belong to different subgroups within the
metanetwork. For example, the interaction between Galucis hirsutus and Centropogon
cornutus connects various parts of the metanetwork (Figure 9), playing a crucial role in
maintaining network integrity and preventing fragmentation into separate compartments.

8. Niche Conservatism in Plant-pollinator networks

Our results reveal that the evolutionary history of species shapes the interaction
patterns in plant-hummingbird networks across Neotropical subregions. The positive
relationship observed for Pwn and Bst (Figure 10 and see Table S12) indicates that
phylogenetically distant communities tend to exhibit more distinct interaction patterns,
mainly driven by species turnover. In contrast, Bos shows a negative relationship with
phylogenetic distance. We observed that communities that are more phylogenetically
dissimilar tend to exhibit more distinct interaction patterns, especially when considering
the pwn component, that is, the total interaction dissimilarity in the network. This pattern
is consistent with the niche conservatism hypothesis, in which functional traits associated
with the evolutionary history of species constrain or guide their interaction possibilities
(Wiens & Donoghue, 2004; Thompson, 2005). In the case of hummingbirds and the plants
they visit, traits such as bill and floral morphology, physiological adaptations, or trophic
preferences appear to be strongly conserved within lineages and therefore directly
influence patterns of interactions. When we look at more specific components such st

(species turnover), the relationship with phylogenetic dissimilarity remains strong,
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particularly for hummingbirds. Both components show significant slopes, indicating that
phylogenetic distance continues to explain a substantial part of the variation not only in
overall dissimilarity (Bwn), but also in how species turnover and interaction rewiring
occur across communities. For plants, the association is also significant but comparatively
weaker, especially for fwn, suggesting that factors beyond phylogenetic relatedness may
play a larger role in shaping interaction patterns among plants. The negative relationship
observed for Pos indicates that closely related communities tend to have more similar
interaction arrangements, with less rewiring, reinforcing the role of evolutionary history
in constraining interaction flexibility.

Supporting the expectations often reported in mutualistic networks where animals
tend to maintain stronger fidelity to ancestral interactions due to physiological
specialization (Rezende, Jordano & Bascompte, 2007), our results reveal that
hummingbirds exhibit higher phylogenetic fidelity in their interactions. This pattern
likely reflects evolutionary constraints related to morphological and physiological traits,
such as bill shape and foraging behavior, which limit the range of floral partners.
Furthermore, the differences in patterns across subregions, such as the stronger
phylogenetic effects observed in the Andes compared to the more diffuse patterns in the
Caribbean or North & Central America suggest that the relative importance of
evolutionary and ecological processes is not spatially homogeneous. Interestingly, only
the Caribbean subregion sometimes exhibits distinct patterns, which could result either
from the relatively low number of hummingbird species in this region or reflect genuine
ecological differences. For example, even for plants Bos, where diversity is high, the
Caribbean still maintains a distinct pattern, suggesting that these differences are not solely
due to species richness. This may reflect differences in biogeographic history, degrees of
isolation, local species diversity, and region-specific environmental filters. Overall, our
findings indicate that phylogenetic niche conservatism is an important factor in shaping
plant-hummingbird interactions, particularly when considering the overall network
dissimilarity (Bwn). However, there is also room for the influence of contemporary
ecological processes that promote flexibility in interactions, especially regarding partner
replacement (Bos). This highlights a dynamic balance between evolutionary legacies and
local ecological contingencies in shaping interaction networks across Neotropical

bioregion
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Figure 10: Relationship between phylogenetic dissimilarity and interaction
dissimilarity in plant—pollinator networks across Neotropical subregions. Panels on
the left correspond to hummingbirds, and panels on the right correspond to plants. Each
panel shows the relationship for a different component of B-diversity: total interaction

dissimilarity (Bwn), species turnover (Bst), and interaction rewiring (os).
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9. Concluding Remarks

We conducted a comprehensive analysis of Neotropical plant-pollinator
interaction networks using an extensive database accumulated over approximately 40
years of research. Our findings reveal general patterns characterizing these interactions,
including predominantly nested networks with low modularity, low connectance, and a
high proportion of indirect effects. The networks also exhibit significant dissimilarity in
both species’ composition and interactions, consequently high beta diversity within and
across biogeographic subregions. Notably, the Caribbean and the Andes emerge as
contrasting extremes. In the Caribbean, networks have lower diversity, reduced
interaction dissimilarity, and less nested structures. This differentiation is evident not only
in network architecture but also in the morphology of hummingbirds, with Caribbean
species exhibiting larger body sizes but comparatively smaller bill lengths than those in
other regions. These patterns likely result from island-specific processes such as
extinctions (Vollstddt et al., 2025), the relatively recent arrival of lineages, and
diversification rates that have yet to reach their peak (McGuire et al., 2014). In contrast,
the Andes exhibit extremely high diversity, attributed to geological uplift events that
drove rapid diversification (McGuire et al., 2014).

Our study also reveals that despite distinct biogeographic differences across
Neotropical subregions, niche conservatism emerges as a important process shaping
plant—pollinator interaction patterns. Our findings demonstrate that evolutionary history
is not simply a backdrop, but an active force shaping ecological interactions across the
Neotropics. The fact that more phylogenetically distant communities exhibit greater
dissimilarity in their interaction patterns (driven primarily by species turnover) reveals
how deep-time evolutionary processes continue to reverberate in contemporary
ecological networks. In essence, the determination of interaction partners is not a random
outcome of ecological availability, but rather the result of a complex equation that
integrates species’ evolutionary history and the constraints imposed by ancestral traits.
Ultimately, our results highlight that Neotropical plant—vertebrate networks are shaped
by a dynamic interplay between evolutionary legacies and ecological flexibility. This
interplay is not spatially uniform, but it is modulated by the biogeographic histories and
ecological conditions unique to each subregion. Understanding this balance is crucial not
only for explaining the patterns we observe today but also for anticipating how these

networks may respond to future environmental changes.
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Supplementary Materials

Biogeography of Vertebrate Pollination on the Neotropics

Detailed description of the methodological procedures

1. Network descriptors
To assess the existence of general patterns in the network structure that could be

explained by biogeography, we examine general aspects of the structure of plant-
pollinator networks that we compiled. To achieve this, we evaluated nestedness,
modularity, connectance, and also the proportion of indirect links in the networks. The
nestedness were computed through the NODF index (Almeida-Neto et al., 2008). This
metric delineates the extent of network nestedness on a scale from 0 (absence of
nestedness) to 100 (perfectly nested) (Bascompte and Jordano, 2013). Modularity was
determined using the algorithm proposed by Stephen Beckett (2016), which describes the
formation of cohesive subgroups of species within the network, interacting significantly
among themselves (Bascompte and Jordano, 2013). Modularity ranges from 0 (no
modules) to 1 (perfectly modular networks). We computed connectance, which also
ranges from 0 to 1 and represents the proportion of observed interactions compared to the
all-possible interactions in the network. Both nestedness and connectance were calculated
using the 'networklevel' function from the bipartite package. Specifically for modularity,
we utilized the 'ComputeModules' function, from the same package (Dorman et al. 2023).

To assess the statistical significance of the obtained nestedness and modularity
values, we generated null models to mitigate the effect of variation in network richness.
This procedure involved generating null networks where the number of links per species
was held constant using the Patefield algorithm (Dormann et al., 2009). In other words,
interactions were randomly redistributed among species while ensuring an equal number
of connections for each. Subsequently, we recalculated the nestedness and modularity
values for each null network. The z-score was employed to evaluate the statistical
significance of the observed values, thus controlling for the effect of variation. The z-

score was computed using the formula (X - p) / 6, where X represents the observed value,
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p is the mean of the null distributions, and ¢ is the standard deviation of these
distributions. Z-scores significantly different from zero indicate statistically significant
deviations from expected randomness, considering the constancy of the number of links
per species. The values obtained here were utilized in subsequent analyses.

We also calculated the proportion of indirect effects in the networks. Indirect
pathways represent the effects induced by species that are not directly connected as
interacting partners. When analyzing an adjacency matrix of interactions, we consider the

Hi"

direct connections between species, i.e., whether species "i" interacts directly with species

nn

J

use a matrix T, that is as a comprehensive effects matrix, summarizing the impact of each

. However, it is possible to calculate indirect pathways from this matrix. For this, we

species in propagating effects through both direct and indirect connections. The
characteristics of matrix T are determined by the pathway size and the dependence
between interacting species (R). In our study, R was kept constant for all species in the
network, with a value of 0.95 chosen to enhance the visualization of indirect effects in the
network (Bonfim et al. 2022; Pires et al. 2020). To isolate the indirect effects from the
total matrix T, we use the following equation: U = Z'ivzy tij x (1—bij)/ ¥V Z?’ tij,
Here, tij 1s derived from the total effects matrix (T) and represents the potential that a
species in column j must affect a species in row i. Meanwhile, bij represents the presence
of interactions between species, where b is the binary interaction matrix. Therefore, 1 -

e
l

bij is used to determine whether there is a direct interaction between species "i” and "j"
(if bij equals 0) or if there is no such interaction (if bij equals 1).

We assessed the dissimilarity among networks belonging to the same
biogeographic region. In addition to assessing the dissimilarity in species composition of
communities (fs) considering that each network represents a local community. Following
Poissot et al. 2012, we decompose the dissimilarity of species interaction networks into
three main components: the dissimilarity of interactions among species common to the
compared networks (Bos), the dissimilarity of interactions due to species turnover (fBsr),
and the overall dissimilarity of interactions (Swn). The calculations are based on classic
dissimilarity indices such as Whittaker's (1960), but with modifications to account for
interactions within each network rather than the species composition in the community
(see Poissot et al 2012 for details). The decomposition of dissimilarity into two

components — one compositional and the other interactive — reveals not only the

differences between networks but also the source of this variation (Poisot et al. 2012).
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2. Phylogenetic and interaction dissimilarity

To assess whether the phylogenetic composition of local communities shapes the
establishment of plant—hummingbird interactions—and thereby determine whether niche
conservatism or niche evolution drives these patterns—we used the phylogenies of plants
and hummingbirds as the basis for calculating phylogenetic dissimilarity between
networks. The wunderlying hypothesis is that communities composed of more
phylogenetically distinct species would tend to exhibit different interaction patterns,
reflecting the influence of evolutionary history on network assembly. The plant
phylogeny was constructed using the GBOTB.extended mega-phylogeny (Jin & Qian,
2019) through the phylo.maker function in the V.PhyloMaker package. This tree is based
on a robust phylogenetic backbone for vascular plants and allows the placement of
missing species based on higher-level taxonomic information (genus and family). For
hummingbirds, we used the phylogeny proposed by McGuire et al. (2014), which
represents one of the most comprehensive and updated phylogenetic hypotheses for
Trochilidae.

From these adjusted phylogenetic trees, we calculated pairwise phylogenetic
dissimilarity matrices for plants and hummingbirds separately. We extracted cophenetic
distances, which represent the sum of the branch lengths separating each pair of species.
These distances were then combined with species presence—absence matrices from the
networks, allowing us to compute phylogenetic beta diversity between communities. This
was calculated using the comdist metric (applied to both plants and hummingbirds),
which measures the mean phylogenetic distance between pairs of species belonging to
different communities (Webb et al., 2002). This metric is particularly sensitive to lineage
turnover across spatial gradients, making it well suited to detect phylogenetic turnover.
The phylogenetic dissimilarity matrix was then paired with the interaction dissimilarity
matrix obtained from the beta diversity of interactions, as previously described.
Additionally, we accounted for the biogeographical structure of the networks by grouping
them into four bioregions: Lowland South America, Andes, Caribbean, and North and
Central America. We tested the relationship between phylogenetic dissimilarity and
interaction turnover using linear models and linear mixed-effects models, with bioregion

as a random effect. Separate models were fitted for each turnover component (Bwn, Bsr,
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and Pos), considering either plants or hummingbirds as the focal group for phylogenetic
dissimilarity.

3. Statistical analyses

To investigate variations in network structure across different biogeographic
regions, we employed generalized linear models (GLM). We used network structure
predictors, such as nestedness, modularity, connectance, and the proportion of indirect
effects, as response variables. The independent variable was represented by subregions of
the neotropics (Andes, Caribbean, lowland South America, and North & Central
America). In order to identify significant differences among the subregions, we conducted
a post-hoc test, specifically the Tukey test. This procedure allowed revealing which
subregions exhibited statistically significant distinctions in relation to the considered
network structure metrics. To investigate the relationships among network predictors, we
employed a principal component analysis (PCA). Subsequently, we selected the first
principal component (PC1) as a summarized representation of network characteristics.
We also conducted generalized linear models (GLM) using PC1 as the response variable
to analyze how these components vary across different regions. To assess significant
differences among the regions, we applied the Tukey test as a post-hoc. These same
procedures were replicated to comprehend the variation in traits among groups (plants,
hummingbirds, and bats) across subregions. Specifically for hummingbird traits, a
principal component analysis (PCA) was exclusively applied. For analyses involving
phylogenetic dissimilarity, we used linear mixed-effects models (GLMMs), incorporating
biogeographical subregion as a random effect. This approach accounts for the hierarchical
structure of the data and potential non-independence among networks within the same
subregion. These models tested whether phylogenetic dissimilarity (plants and
hummingbirds separately) predicts interaction dissimilarity components (Bwn, Bst, and
Bos), thus assessing whether evolutionary history constraint interaction patterns. All

models were adjusted according to the nature and distribution of each response variable.
TABLES

Table S1: Tukey’s multiple pairwise comparisons of nestedness (Z.NODF) between

biogeographic regions. Significant differences (p < 0.05) are in bold.

Pairwise comparisons Estimate Std. t p-
Error value value
Caribbean — Andes 3267 1141 -2.863  0.027
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Lowland South America — Andes -1.604 0.808 -1.985  0.198
North & Central America — Andes -1.689 1.141 -1.480 0.446
Lowland South America — Caribbean 1.663 1.004 1.657 | 0.346
North & Central America — Caribbean 1.578 1.287 1.226 @ 0.604
North & Central America — Lowland South | -0.085 1.004 -0.084 | 0.999

America

Table S2: Tukey’s multiple pairwise comparisons of modularity (Z.modularity) between

biogeographic regions. Significant differences (p < 0.05) are highlighted in bold.

Pairwise comparisons Estimate Std. t p-
Error value value
Caribbean — Andes 1.548 0.570 2.718  0.040
Lowland South America — Andes 0.486 0.403 1.204 | 0.618
North & Central America — Andes 0.810 0.570 1.421  0.482
Lowland South America — Caribbean -1.063 0.501 -2.120 | 0.153
North & Central America — Caribbean -0.739 0.643 -1.149 0.652
North & Central America — Lowland South | 0.324 0.501 0.646 0914

America

Table S3: Tukey’s multiple pairwise comparisons of log-transformed connectance

between biogeographic regions. Significant differences (p < 0.05) are highlighted in bold.

Pairwise comparisons Estimate Std. t p-
Error value value
Caribbean — Andes 0.753 0.223 3370 0.007
Lowland South America — Andes 0.187 0.158 1.185 | 0.630
North & Central America — Andes 0.037 0.223 0.167 | 0.998
Lowland South America — Caribbean -0.565 0.196 -2.878  0.026
North & Central America — Caribbean -0.715 0.252 -2.839 | 0.029
North & Central America — Lowland South = -0.150 0.196 -0.764  0.866

America

Table S4: Pairwise comparisons of indirect effects among biogeographic regions from a

beta regression mixed model. Significant differences (p < 0.05) are highlighted in bold.

Pairwise comparisons Estimate Std. z p-
Error value value
Caribbean — Andes -0.634  0.194 -3.266  0.006
Lowland South America — Andes -0.232 0.141 -1.643 | 0.346
North & Central America — Andes -0222  0.197 -1.122  0.668
Lowland South America — Caribbean 0.402 0.168 2.395 | 0.075
North & Central America — Caribbean 0413 0217 1.899  0.222
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North & Central America — Lowland South | 0.010 0.172
America

0.061

1.000

Table SS5: Pairwise comparisons of the first principal component (Dimension 1) scores

derived from PCA on network structure metrics across biogeographic regions.

Pairwise comparisons Estimate Std. t p-

Error value value

Caribbean — Andes 2491  0.700 -3.557  0.0039
Lowland South America — Andes -0.867 0.496 -1.748  0.300
North & Central America — Andes -0.855  0.700 -1.220  0.608

Lowland South America — Caribbean 1.624 0.616 2.636 | 0.0483
North & Central America — Caribbean 1.636  0.790 2.071 0.168
North & Central America — Lowland 0.012 0.616 0.020  1.000

South America

Table S6: Pairwise Tukey comparisons for average hummingbird bill length across

biogeographic regions. Significant p-values are shown in bold

Pairwise comparisons Estimate Std. t p-

Error value value
Caribbean — Andes -8.933 1.454 -6.146 <0.001
Lowland South America — Andes -2.754 0.969 -2.841 | 0.0315
North & Central America — Andes -3.421 1.368 -2.501 0.0707
Lowland South America — Caribbean 6.179 1.316 4.695 | <0.001
North & Central America — Caribbean 5.512 1.632 3.378  0.0075
North & Central America — Lowland -0.667 1.221 -0.546 | 0.9450
South America

Table S7: Pairwise Tukey comparisons for average hummingbird bill curvature across

biogeographic regions. Significant p-values are shown in bold

Pairwise comparisons Estimate Std. t p-

Error value value
Caribbean — Andes 2315 1.079 2.145  0.1494
Lowland South America — Andes 1.761 0.720 2.446 | 0.0796
North & Central America — Andes 1639 1.016 1.614  0.3721
Lowland South America — Caribbean -0.555 0.977 -0.567 | 0.9390
North & Central America — Caribbean 0676 1212 0.558  0.9418
North & Central America — Lowland -0.122 0.906 -0.134 | 0.9991

South America
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Table S8: Pairwise Tukey comparisons for average hummingbird body mass across

biogeographic regions. Significant p-values are shown in bold

Pairwise comparisons Estimate Std. t p-
Error value  value

-1.5053  0.3305  -4.554  <0.001

Caribbean — Andes

Lowland South America — Andes -0.7611 0.2204 -3.453 | 0.0062
North & Central America — Andes -0.4389  0.3110 -1.411 0.4895
Lowland South America — Caribbean 0.7442 0.2993 2.487 | 0.0727
North & Central America — Caribbean 1.0663  0.3711 2.874  0.0292
North & Central America — Lowland 0.3222 0.2776 1.161 | 0.6456

South America

Table S9: Pairwise comparisons of the first principal component (Dimension 1) scores

derived from PCA on hummingbird traits across biogeographic regions.

Pairwise comparisons Estimate Std. t p-value
Error value

Caribbean — Andes -3.3910  0.4840 -7.006 <0.001
Lowland South America — Andes -1.5213  0.3228 -4.713  <0.001
North & Central America — Andes -1.2890  0.4554 -2.830  0.03256
Lowland South America — Caribbean 1.8698 0.4382 4267 | <0.001
North & Central America — Caribbean 2.1020 0.5434 3.868 0.00176
North & Central America — Lowland 0.2323 0.4064 0.572 | 0.93777

South America

Table S10: Pairwise Tukey comparisons for average bat body mass across biogeographic

regions. Significant p-values are shown in bold

Pairwise comparisons Estimate Std. t p-
Error Value value

Caribbean — Andes -1.910 6.676 -0.286  0.991
Lowland South America - Andes 1.929 5.642 0.342 | 0.985
North & Central America - Andes -7.812 7.464 -1.047  0.723
Lowland South America - Caribbean 3.839 5.642 0.680 | 0.900
North & Central America - Caribbean -5.902 7.464 -0.791  0.855
North & Central America - Lowland South | -9.741 6.556 -1.486 | 0.472
America
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Table S11: Pairwise Tukey comparisons for average flower corolla length across

biogeographic regions. Significant p-values are shown in bold

Pairwise comparisons Estimate Std. t p-

Error Value value
Caribbean — Andes 1.8511 4.1074 0.451  0.9680
Lowland South America - Andes 8.6241 2.8177 3.061 0.0166
North & Central America - Andes 8.9289 4.1074 2.174  0.1372
Lowland South America - Caribbean 6.7730 3.6828 1.839 | 0.2576
North & Central America - Caribbean 7.0777 4.7428 1.492  0.4387
North & Central America - Lowland 0.3048 3.6828 0.083 0.9998
South America

Table S12: Results of generalized linear mixed models (GLMMs) evaluating the
relationship between phylogenetic dissimilarity and the components of beta diversity
(Bwn, Bstand Bos) for hummingbirds and plants. Biogeographical regions were included
as a random effect. For each model, we present the fixed-effect estimates (estimate +
standard error), f-values, and the R? which represents the proportion of variance
explained by both fixed and random effects.

Variavel Resposta Intercepto t value R2
(Est + SE)

Hummingbird fwn 12.513 2.975 0.65
+4.206

Hummingbird Sst 3.9103 4.510 0.67
+0.8671

Hummingbird fos -3.7620 4.059 0.67
+0.9268

Plants Swn 129.02 6.729 0.07
+19.17

Plants Bst 37.812 10.33 0.15
+ 3.660

Plants fos -34.375 -8.849 0.12
+ 3.885
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Habitat loss, not fragmentation per se, drives structural changes and
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Abstract

When natural areas are converted for human use, resulting changes in the landscape often
lead to habitat loss and fragmentation, which can disrupt key ecological interactions such
as pollination by animals. In this study, we investigated the independent effects of habitat
loss and fragmentation on the structure and composition of plant-vertebrate pollinator
interaction networks, focusing on interactions mediated by birds and bats in the
Neotropical region. We assessed how landscape structure influences network properties,
including plant and pollinator richness, number of interactions, connectance, nestedness
and modularity. We also evaluated the potential of indirect effects to propagate through
the network (i.e. species changes driven by cascading interactions across the network),
the occurrence of extinction cascades (sequential species losses triggered by the
disappearance of key mutualistic partners), and interaction dissimilarity across
landscapes. Our results show that habitat loss (i.e. reduced forest cover) is associated with
lower plant and pollinator richness, fewer interactions, reduced nestedness, increased
connectance and vulnerability to cascading effects. Species turnover emerged as the main
driver of interaction dissimilarity between contrasting landscapes (e.g., sites with high vs.
low forest cover), whereas in more similar landscapes, where species pools overlap,
rewiring of interactions played a larger role. In contrast, fragmentation per se (i.e.
independent of habitat amount) had no significant effect on any of the network metrics
analyzed. These findings suggest that habitat loss and changes in species composition,
rather than fragmentation per se, shapes the structure and dynamics of plant-vertebrate
pollinator networks in distinct landscapes.

keywords: deforestation, interaction, mutualism, landscape ecology, hummingbirds,

bats.

2 Manucrito subetido para publicagdo na Biological Conservation na edi¢do especial
“Beyond species: Protecting species interactions in a changing environment”
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Highlights

e Habitat loss triggers species declines in plant—vertebrate pollination networks.

e (ascading structural changes follow, reducing network resilience to further
extinctions.

e ~90% of interaction dissimilarity across landscapes is due to species turnover.

e Plant—pollinator networks are not influenced by fragmentation per se.
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1. Introduction

The Anthropocene is a period characterized by human activities reaching a scale large
enough to modify the Earth's system and functioning (Malhi et al., 2014; Zalasiewicz et
al., 2024). One of the major causes of these changes is the human-based modifications in
tropical forests, specifically through land use (Malhi et al., 2014). Land use promotes
changes in the landscape structure, i.e., the spatial arrangement, composition, and
configuration of different elements or features within a landscape, leading to the rupture
of previously suitable habitats for maintaining biodiversity (Fahrig, 2003; Geist and
Lambin, 2002). The disruption of once-continuous habitats (fragmentation) and the
reduction of forested areas (habitat loss) have historically been driven by land conversion
for agro-pastoral activities (Malhi et al., 2014), and urban development (Santos et al.,
2022). As a result, many biomes worldwide are now highly fragmented and deforested
(Riva et al., 2024; Vancine et al., 2024). This widespread transformation has prompted
decades of research focused on understanding the impacts of habitat loss and
fragmentation on biodiversity (Fahrig, 2003; Geist and Lambin, 2002; Matuoka et al.,
2020; Morante-Filho et al., 2021; Rios et al., 2021; Rocha-Santos et al., 2020).

Decades of empirical research have shown that habitat loss is a major driver of
biodiversity decline, whereas the evidence for negative effects of fragmentation per se
(i.e., the spatial breakup of continuous habitat into smaller and more isolated patches,
independent of habitat loss) remains limited (Fahrig, 2003; Martinez-Ruiz et al., 2025;
Watling et al., 2020). This conceptual distinction is crucial: while habitat loss refers to a
reduction in the total amount of habitat, fragmentation per se refers specifically to changes
in the spatial configuration of the remaining habitat, particularly an increase in the number
of patches or their isolation, without necessarily changing the total area (Fahrig et al.
2019). Importantly, fragmentation is a landscape-scale process, whereas most studies still
rely on patch-scale metrics (Fahrig, 2017; Riva et al., 2025) which are inherently
confounded with habitat amount and therefore fail to assess the independent effects of
fragmentation (Fahrig, 2017). We are currently in a position to move beyond and
disentangle the effects of habitat amount and fragmentation per se to comprehend human
consequences on ecosystem assembly and functioning (Vélez et al., 2025).

While it is well established that taxonomic diversity responds strongly to landscape
changes such as habitat loss, growing evidence suggests that these changes also disrupt
key ecological processes, including pollination (Carlos et al., 2025; Ferreira et al., 2020;

Soares et al., 2021). Pollination is an essential ecological interaction sustaining tropical
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forest ecosystems, where over 90% of flowering plants rely on pollinators to achieve
sexual reproduction (Ollerton et al., 2011; Tong et al., 2023). However, human activities
are increasingly threatening pollination dynamics (Rodger et al., 2021). Although the
impacts are well-documented for invertebrate pollinators (Ferreira et al., 2020; Newton
et al., 2018), and for vertebrates at local scales (Bernard and Fenton, 2003; Calos et al.
2025; Farneda et al., 2015; Hadley et al., 2018, 2014; Hadley and Betts, 2009; Leimberger
et al., 2022; Teixido et al., 2022; Volpe et al.,, 2016; Quesada et al. 2003), the
consequences for vertebrate-mediated pollination at macroecological scales remains an
open question. In the Neotropical forests, hummingbirds (Trochilidae) and bats
(Phyllostomidae) play a crucial role in pollination dynamics, serving as primary
pollinators for sixty-five and sixty-seven families of angiosperms, respectively, placing
them as keystone species for ecosystem functioning (Fleming et al., 2009). Their
interactions shape not only reproductive success at the species level, but also the structure
and functioning of entire communities, particularly in ecosystems where insect
pollinators are scarce or seasonally variable (Dellinger et al. 2023). Despite increasing
knowledge about the effects of habitat loss on pollinator diversity and pollination
services, we still know little about how fragmentation per se affects these ecological
interactions, particularly at broad spatial scales (Hadley and Betts, 2012).

The effects of landscape changes on species interactions at the community level can be
effectively studied using a network approach (Ferreira et al., 2020; Keyes et al., 2021;
Carranza-Quinceno et al. 2024; Arina-Velez et al. 2025). In mutualistic networks,
environmental disturbances such as habitat loss can reduce species richness and/or
reshape interactions, often leading to structural shifts in network structure (Bonfim et al.,
2023; Ferreira et al., 2020; Menezes Pinto et al., 2021). Changes in species composition
may reorganize ecological interactions, increasing the dissimilarity among networks
(Poisot et al., 2015). As a consequence, changes in network structure and composition
may affect the stability and resilience of mutualistic systems (Bascompte et al., 2003;
Bonfim et al., 2023; Souza et al., 2018). The shifts in composition and the way species
interact can be assessed by the beta-diversity of interactions, capturing the variation in
interaction patterns across different locations (Carstensen et al., 2014; Poisot et al., 2015,
2012). Lastly, given the interdependence of species within mutualistic networks,
disturbances in landscapes, like deforestation, can propagate through the network, leading
to cascading effects (Dattilo et al., 2016; Fricke et al., 2018). These cascading effects, in

turn, propagate through indirect interactions, where species indirectly influence other
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species (Pires et al., 2020). For instance, plants sharing common pollinators are indirectly
connected through this pollinator, meaning that a change in one plant may cascade to
another plant through the pollinator (Bergamo et al, 2017; Bergamo et al 2021). Indirect
pathways can alter the whole network's ecological and evolutionary dynamics
(Carvalheiro et al., 2014; Guimaraes et al., 2017; Maia and Guimaraes Jr, 2024). Among
these indirect interactions, one fundamental problem is the emergence of coextinction
cascades (Pires et al., 2020).

In this study, we investigated how habitat loss and forest fragmentation per se affect the
structure and vulnerability of plant-vertebrate pollination networks mediated by birds and
bats in the Neotropical region (Fig. 1a). Specifically, our objectives were to investigate
the independent effects of forest loss and fragmentation on (i) the structural properties of
the networks (plant and pollinator richness, number of interactions, connectance,
nestedness and modularity), (ii) the potential propagation of indirect effects within the
networks, (iii) network vulnerability to extinction cascades, and (iv) the dissimilarity in
species interactions. We hypothesize that fragmentation per se has limited effects on
plant—vertebrate pollinator networks, whereas forest loss plays a more critical role in
shaping network structure and vulnerability. This hypothesis is supported by previous
studies showing that (habitat amount is more important in sustaining biodiversity than the
spatial arrangement of forest patches - Fahrig, 2013; Rios et al., 2021; Watling et al.,
2020).

Accordingly, we expect that (i) networks in landscapes with lower forest cover would
support fewer plant and pollinator species, fewer interactions, and reduced nestedness due
to the loss of specialist species, which are often more sensitive to disturbances (Aizen et
al., 2012). In addition, changes in species composition and limited resources may lead to
more compartmentalized networks, increasing modularity. These changes can result in
structurally simplified networks dominated by generalists and highly connected species
(Fig. 1b). Additionally, we expected that (i1) indirect effects would play a reduced role
in such landscapes, as less rich and less nested networks are likely to exhibit fewer
pathways connecting species (Guimaraes et al., 2017). Regarding extinction cascades, we
predicted that (iii) reduced forest cover would lead to greater vulnerability to secondary
extinctions, as networks in degraded landscapes become structurally weakened due to the
loss of pollinators (Bernard and Fenton, 2003; Heer et al., 2015; Lindberg and Olesen,
2001; Tinoco et al., 2017). Finally, we hypothesized that (iv) in similar landscapes

(regarding forest cover), interaction dissimilarity will be better explained by the rewiring
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of interactions. In these landscapes, species may persist across sites but interact
differently — with a higher likelihood of co-occurrence, leading to low species turnover
and high interaction rewiring. Conversely, in dissimilar landscapes, we expect low
species co-occurrence, resulting in minimal interaction rewiring but high species
turnover. This pattern would reflect strong environmental filtering promoting species
replacement across contrasting landscapes (White et al., 2022) (Fig. 1c). While we
anticipated limited influence of fragmentation per se (patch density) on network structure
and vulnerability, we formally tested its independent contribution in all analyses,
recognizing that in some ecological contexts, habitat fragmentation may play a

meaningful role.
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Figure 1: Predicted effects of forest cover and landscape dissimilarity on network structure and
interaction beta-diversity on plant-vertebrate networks. (A) Study Area — Map of Neotropical Humid
Forests. The map illustrates the forest cover in the Neotropical region, with purple dots marking the
locations of the 67 interaction networks sampled. To the right, a zoomed-in view highlights the buffers used
for landscape analyses, with 12 buffers ranging from 250 to 3000 meters around the network locations.
With the buffer representation, we provide an example of a plant-pollinator interaction network, where
vertebrate pollinators are depicted in orange and flowering plants in light green (for high forested
landscapes) and gray (for low forested landscapes). B) Conceptual relationships between forest cover and
network metrics. As forest cover increases, species richness, number of interactions, nestedness, and

indirect pathways are expected to increase (green line), while modularity, connectance, and extinction
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cascade likelihood tend to decrease (orange line). C) Expected linear relationship between landscape
dissimilarity and the components of interaction beta-diversity. Greater dissimilarity between landscapes
leads to increased beta-diversity of interactions driven by species turnover (Sst) and decrease of interaction

dissimilarity explain by species co-occurrence and consequently interaction rewiring (50s).

. Methods
2.1 Vertebrate Pollination Interaction Dataset

We gathered a dataset on neotropical pollination interactions, including only
flying anthophilous vertebrates - birds and bats -, using four available databases: Web of

Life (Fortuna et al.,, 2014), Interactions Web (http://www.ecologia.ib.usp.br/iwdb),

Atlantic pollination (Iamara-nogueira et al., 2022), and Neobat interactions (Florez-

Montero et al., 2022). We also searched in the DRYAD (https://datadryad.org/), Scopus,

and Web of Science repositories using the following terms: “plant-pollinator network”
OR “pollination network” OR “floral visitation network” OR (“mutualistic interaction
network” AND pollinator) AND “tropical”. We only include empirical studies conducted
in neotropical forests that focused on the community level. The networks included
legitimate pollination interactions, but floral visits may also be included in some cases.
We opted for this approach because (1) information on the reproductive consequences of
visiting events is often absent; (2) the role of a given animal can vary in space and time,
shifting from pollinators to non-pollinating floral visitors (Thompson, 2005); (3)
pollinators and non-pollinating floral visitors affect the ecology and evolution of plant-
pollination systems. Therefore, we treated all such interactions as pollination in a broad
sense.

We extracted the geographic coordinates of the sites where each study was
conducted and the networks resulting from sampling interactions. In our study, we
analyzed 67 plant-vertebrate pollinator networks (Fig. 1a), each originating from a
different sampling site within moist tropical forest fragments. These networks were
compiled from 47 separate studies, conducted between 1979 — 2019. The networks were
obtained by the authors using different sampling methods, including focal observation
(most frequent), transect, camera traps, and pollen collection using capture methods such
as mist nets or a combination of these methods (described in Table S1). In this context,
each sampling site or coordinate corresponds to a unique forest fragment where the
studies were conducted, and each site provided one network used in our analysis. We

tested whether any sampling method was associated with our response variables and
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found no and found no significant relationship (Kruskal-Wallis test: p = 0.7 for both forest
cover and patch density), suggesting that while different methods may introduce some
noise, they do not systematically bias our results and instead highlight their robustness
even in heterogeneous datasets.
2.2 Landscape metrics

To understand the effects of habitat loss and fragmentation per se on network
predictors, we used two landscape metrics: 1) the percentage of forest cover; and ii) patch
density (number of patches per unit area) (Horning, 2008). Both metrics are commonly
used to characterize landscape structure in ecological studies (Bonfim et al., 2023; Lausch
et al., 2015; Morante-Filho et al., 2018). Notably, when considered independently from
forest cover, patch density is an indicator of fragmentation per se. Using the geographic
coordinates provided by each study, we first collected spatial data, specifically, mappings
of forest cover within the Neotropical region (Fig. 1a). We collected these mappings
through the dataset developed by the European Commission that mapped the forest cover
change in tropical moist forests (TMF) using a 41-year time series, between 1990-2022
(Vancutsem et al., 2021). This dataset includes all forests in the humid tropics, comprising
rainforest and the tropical moist deciduous forest. We chose the 'annual change collection'’
because it provides detailed information on different types of forests and deforested areas,
based on Landsat satellite images. This product offers a spatial resolution of 0.09 hectares
(each pixel represents a 30 by 30-meter area), making it especially useful for calculating
landscape metrics. Thus, we extracted maps for each sampling site, corresponding to the
year of sampling or the closest available year when an exact match was not possible. All
raster files were classified into two categories: forest and non-forest. Finally, we
calculated the percentage of forest cover and patch density within circular buffers ranging
from 250 to 3,000-meter, at 250-meter intervals, around each sampling site to evaluate
the scale of effect (Jackson and Fahrig, 2015; Miguet et al., 2015). The scale of effect
refers to the spatial extent at which landscape metrics best predict each network descriptor
(Dattilo et al., 2023). Because we lack prior knowledge of the spatial scale at which
landscape variables affect network predictors, we used a multi-scale analysis to determine
the spatial extent with the greatest explanatory power. The buffer size range (250 to
3,000-meter radius) was based on previous studies on movement ecology and landscape
use by nectarivorous birds and bats (Aguiar et al., 2014; Bernard and Fenton, 2003;
Hadley et al., 2018; Hadley and Betts, 2009; Loayza and Loiselle, 2008; Volpe et al.,
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2016). Landscape metrics were calculated in R (version 4.3.2) using the landscapemetrics

package (Hesselbarth et al., 2019).
2.3. Network descriptors

For each sampling site, we built a matrix A in which columns represent plant
species, rows represent vertebrate pollinators, in which the element a;=1 indicates the
presence of an interaction between the plant i and the pollinator species j, and a;=0
otherwise. Using these matrices A for each site, we characterized the plant- vertebrate
pollinator networks with the following metrics: number of interactions, number of plant
species (plant richness), number of pollinator species (pollinator richness), connectance ,
which is the proportion of interactions observed among all the possible interactions in
each site (Dunne et al., 2002; P. Jordano, 1987), nestedness and modularity. The
nestedness estimates the average overlap between the assemblage of the interaction
partners of specialist and generalist species. Nestedness was estimated by the NODF
index (Almeida-Neto et al., 2008), ranging from 0 (no nestedness) to 100 (perfectly
nestedness) (Almeida-Neto et al., 2008). Modularity describes the formation of cohesive
sub-groups of species within the network that interact strongly among themselves
(Bascompte and Jordano, 2013), forming groups. We used the Barber’s Q metric to
estimate modularity in networks with two sets of interacting elements, such as plants and
pollinators (i.e., bipartite graphs). The values of Q typically range from 0 (no significant
levels of modularity) to 1 (strong modularity), and were estimated using the Beckett
algorithm (Beckett, 2016). We calculated nestedness and connectance through the
function networklevel and modularity using computeModules. Both functions are part of
the bipartite package (Dormann et al., 2009).

We employed a null model approach to evaluate whether the observed values of
nestedness and modularity significantly deviate from those expected under random
network assembly. The null model generated random networks that preserved key
features of the observed network, such as the number of species and interactions, while
reshuffling connections to remove any underlying non-random structure. We applied the
Patefield algorithm, which randomizes the distribution of links between species while
keeping the number of links per species constant (Dormann et al., 2009). We generated
1000 null model networks for each site and subsequently computed the Z-scores for

nestedness and modularity based on the observed values relative to the corresponding
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. X- . )
values derived from the random networks: Z — Tﬂ , where X is the observed metric

value (nestedness or modularity); u = average value of the metric obtained through the
1000 null model networks; and ¢ = standard deviation of the ensemble of null model
networks.

We investigated the potential impact of landscape changes on indirect effects and
extinction cascades using the approach introduced by Guimardes et al. (2017) for
coevolutionary dynamics and adapted to coextinction cascades by Pires et al. (2020).
Indirect pathways represent the effects induced by species that are not directly connected
as interacting partners. To compute the potential for indirect effects in plant-networks, we
used A to populate a square matrix B in which all species (plants and pollinators) are
depicted in both rows and columns in such a way that both row i and column i depict the
same species i. The matrices A and B contain the same information, but B allows to
compute the matrix operations that are needed to estimate the potential for indirect effects
in a network. To do so, we standardized each row of B to sum one, leading to the matrix
B’. We then computed a total effects matrix T=(I- RB’)"! , in which I is the identity matrix
with the same dimensions of B’ and R is the dependence between interacting species. In
our study, R was kept constant for all species in the network, with a value of 0.95 chosen
to enhance the visualization of indirect effects in the network (Bonfim et al., 2023; Pires
et al., 2020). The matrix T summarizes the potential of direct and indirect effects of
propagating in the network under the assumption that the effects die off along the pathway
length. From the total effects matrix T, we computed the overall potential of indirect
effects of a given network using the following equation:

U=3¥3)t; A=bij)/ Z¥ TNt

Here, #; is derived from the total effects matrix (T) and represents the potential that a
species in column j affects a species in row i. The (1 - bj) is used to remove the effects
between direct interactions. In addition, matrix T also allows us to assess the influence of
species present in the network in propagating both total effects (7,./) and indirect effects
for each species (for details see Pires et al. 2020). Therefore, we obtained the influence
of a species on the other species in the network through paths of varying lengths (both
direct and indirect paths, Tou), as well as the extent of the indirect effects that the species
propagates in the network.

Finally, to assess the effects of the landscape on extinction cascades, we simulate

the extinction of vertebrate species using the 7T,ur values. We utilized the method
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developed by Vieira and Almeida-Neto in 2015, adapted by Pires et al. in 2020, to
determine the average size of the extinction cascade within each network. We standardize
Tout values to range from 0 to 1 (with higher values associated with a greater spread of
links in networks, that is, greater influence), we targeted species with values closest to 1
for extinction. In cases where more than one species presented a 7Touw value of 1, we
randomly selected one of them for extinction. Our simulations specifically focused on the
extinction of animal species, as our primary goal was to calculate extinction cascades.
Therefore, it was unnecessary to target species from both trophic levels, aligning with our
previous objective. To quantify the extinction cascade, we counted the species that
became extinct following the extinction simulation and expressed this as a percentage of

the total number of species in the network.
2.4. Beta diversity of interactions

To assess the effect of landscape structure on dissimilarity of interactions, we
calculated the beta-diversity of interactions, i.e, the dissimilarity between each pair of
interaction networks. Following Poisot et al. 2012, we decomposed the dissimilarity into
four components: (i) Ss, the dissimilarity in species composition between communities,
considering each network as a local community; (ii) Swn, the overall dissimilarity between
networks, which is further partitioned into (iii) Bos, the dissimilarity of interactions among
species shared between networks (i.e. rewiring), and (iv) fSst, the dissimilarity due to
species turnover among networks. These metrics build on classical dissimilarity indices
such as Whittaker's (1960), but are adapted to account for species interactions rather than
only species composition (see Novotny, 2009 and Poisot et al, 2012 for details). This
decomposition allows us to identify the extent of dissimilarity between networks and also
understand the source of this variation, whether it results from species turnover or from
changes in the interactions among shared species (Poisot et al., 2012). Finally, we also
partitioned the turnover component Bst to assess whether species turnover is driven by
pollinator turnover, plant turnover, or combined turnover of both groups, following
Novotny, 2009. We also assessed the relative importance of each of these components to
the total interaction dissimilarity, identifying which group contributed most strongly to
network variation. We calculated interaction beta diversity using the betalink function
(Poisot et al., 2012), applying a correction to avoid underestimating the st component

(Friind, 2021).
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2.5 Data analysis

To evaluate the effects of habitat loss and fragmentation per se on plant-vertebrate
pollination networks, we fitted linear models using forest cover and patch density as
predictors of distinct network descriptors. Given that habitat amount can strongly
influence fragmentation metrics, we assessed fragmentation effects by including both
predictors simultaneously. In contrast, we evaluated the isolated effects of habitat loss by
fitting models with forest cover alone. To assess whether and how vertebrate-mediated
pollination networks are influenced by habitat loss, we employed linear models with
different distributions, tailored to the nature of the response variable (see details in the
supplementary material) and the explanatory variable - forest cover, considering the scale
of effect (see topic 2.2 of methods). Thus, we fitted linear models for each network metric
(number of interactions, plant and pollinator richness, connectance, nestedness,
modularity, proportion of indirect effects, and average size of the extinction cascade, the
latter weighted by network size). To control for effects of sampling effort on the
descriptors, we calculated sampling intensity, and included it as a covariate in the

statistical models (Emer et al., 2020). The sampling intensity of each network was

estimated as % , where N is the number of interactions in the network, and S is the size

of the network, that is, the sum of the number of plant species and the number of animal
species in a network (Emer et al., 2020; Schleuning et al., 2012). Since environmental
variables can represent a source of variation at broad spatial scales, we extracted three
bioclimatic variables—average annual temperature (°C), average annual precipitation
(mm), and topography represented from the digital elevation model (DEM). These data
were obtained at a resolution of 30 arc seconds from WorldClim v.2.0 (Fick and Hijmans,
2017) and STRM (https://srtm.csi.cgiar.org/). Using Pearson's correlation test, we
evaluated the existence of collinearity between predictor variables and covariates (Zuur
et al., 2010). Temperature was significantly correlated with altitude (r = -0.82) and
precipitation (r = 0.40) (Fig. S2). Therefore, only uncorrelated covariates, that is, altitude,
precipitation, and sampling intensity were used in further analysis. These covariates were
subjected to model selection using the stepwise method, choosing the simplest and most
parsimonious model using AAICc < 2. Our goal was not to evaluate their effects but to

control them, thus, we do not discuss their results.
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Next, to assess the effect of fragmentation per se we followed the statistical
protocol proposed by Watling et al. (2020). We first determined the appropriate scale of
effect for patch density and then conducted model selection by comparing three
competing models: (1) a model including forest cover, (2) a model including both forest
cover and patch density, and (3) a null (intercept-only) model, also choosing the simplest
and most parsimonious model using AAICc < 2. If fragmentation had an independent
effect, the model including both forest cover and patch density should provide a better fit
than the model including only forest cover. We additionally examined potential spatial
autocorrelation using Moran's I statistic, and we did not detect spatial correlation structure
in our models after accounting for the geographic coordinates of each study (p > 0.05 for
all models, see Supplementary materials). Finally, we present the coefficients of each
predictor and the variance explained by the linear model with best fit (R?). We obtained
the adjusted R? for linear models with negative binomial and beta distributions by using
the piecewiseSEM package (Lefcheck, 2016).

To evaluate the relationship between network dissimilarity and landscapes, we

developed a landscape dissimilarity index: LD = W, where LD is the
max

landscape dissimilarity index, Fcy,q, 1S the maximum forest cover value between the
landscape pairs and Fc,,;, is the minimum forest cover value between the landscape pairs.
The resulting index provides a standardized measure of forest cover dissimilarity between
landscapes, ranging from 0 to 1. Pairs of landscapes with similarly low forest cover are
positioned on the left side of the x-axis, whereas pairs with extreme differences (e.g., low
forest cover vs. high forest cover) are located on the far-right end of the x-axis (Fig. 1c).
This approach allowed us to effectively capture and compare varying levels of landscape
dissimilarity in relation to network dissimilarity.

For each interaction dissimilarity component (fs, Bwn, Sos, and Bst), we fitted five
statistical models to explore different potential responses to landscape heterogeneity.
These models included: (1) a simple generalized linear model (GLM); (2) a quadratic
model to capture potential non-linear relationships; (3) a linear mixed-effects model
(GLMM) with random intercepts for Neotropical sub-regions (Andes, Caribbean,
lowland South America and North & Central America), accounting for potential regional
variation; (4) a quadratic GLMM also with Neotropical subregions as random effect, and
(5) a generalized additive model (GAM) aimed at identifying unexpected patterns or

complex associations. All models were fitted using a binomial distribution for the
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response variable, with landscape dissimilarity as the predictor variable. The most
parsimonious model for each index was selected considering AAICc < 2 as the best fit
(Table S2).

3. Results

We obtained 67 plant-vertebrate pollinator networks, distributed in twelve
neotropical countries — Brazil (32), Ecuador (9), Colombia (7), Costa Rica (5), Mexico
(3), Bolivia (2), Cuba (2), Puerto Rico (2), Dominica (2), Grenada (1), Jamaica (1), Peru
(1). The networks included 179 species of vertebrates, of which 135 species belong to the
family Trochilidae, 19 belong to other groups of birds (such as Thraupidae, Icteridae,
Cotingidae, and Picidae), and 25 species of bats belonging to the Phyllostomidae family.
We recorded 740 plant species across 76 botanical families. The most frequent vertebrate
species were Thalurania glaucopis and Phaetornis ruber, found in 30% (n=20) and 18%
(n=12) networks, respectively. Among plants, Nidularium innocentii (Bromeliaceae) was
the most frequent species, occurring in 16% (n=11) networks. In general, species richness
within the networks ranged from 4 to 84 species (including both plants and pollinators).
The number of plant species varied between 2 and 64, while the number of pollinator
species ranged from 2 to 23. The networks were immersed in a landscape context ranging
from 8 % to 100% of forest cover and from 1 to 239 forest fragments (considering the
maximum analyzed spatial scale of 3000m).

All response variables were better explained by models including forest cover
alone (Table S3). The scale of effect varied among the response variables, but we found
the 3000 m radius to be the best scale for most models about forest cover (Table 1).
Regarding network structure, we found the forest cover to be significantly associated with
the plant and pollinator richness, the number of interactions, connectance, and nestedness,
but not with modularity (Fig. 2F). Additionally, we found a positive association among
the number of interactions and the plant/pollinator richness (Fig. 2A-C; Table 1), while
connectance exhibited a negative relationship (Fig. 2D; Table 1). The percentage of forest
cover was positively related to nestedness. Finally, for modularity, we do not find any

significant relationship (Fig. 2E-F; Table 1).

Table 1: Results of linear regression models testing the influence of forest cover (FC) on plant-
vertebrate pollinator networks. The scale represents the scale of effect, that is, the spatial extent where
the independent variable was measured with the best response to the dependent variable. R? represents an
estimate of how much the best model explains the variation. Finally, the symbol “+” indicates that the
variable presented below is covariant to explain the changes in the corresponding network predictor.



Network
metric

Plant
richness

Pollinator
richness

Number of
interactions

Connectance

Z-NODF

Z-
modularity

Proportion
of indirect
effects

Mean
cascade size

Best
model

FC+
sampling
intensity

FC
+Sampling
intensity
+precipitati
on

FC+
Sampling
intensity

FC+
sampling
intensity

FC+
sampling
intensity

FC
+sampling
intensity

sampling
intensity

~FC+
sampling
intensity

distribution scale
(m)
Negative 3000
binomial
Negative 3000
binomial
Gaussian 3000
(log
transformed)
Gaussian 3000
(log
transformed)
Gaussian
3000
Gaussian 2750
Beta 3000
Gaussian 3000
(log

transformed)

0.008

2.276

0.006

1.478

-0.000

0.006

3.822

-0.005

-0.731

0.000

0.073

7.841e-
05

4.222e-
02

1.239

-0.008

-2.822

SE

0.003

0.400

0.002

0.363

0.000

0.002

0.356

0.002

0.336

0.000

0.014

5.157e-
05

7.049¢-
03

0.2894

0.003

0.457

t/z
value

2.871

5.686

2.170

4.069

-1.732

2.437

10.716

-2.008

-2.176

1.916

4.960

-1.520

-5.990

4.282

-2.507

-6.165
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R2

0.54

0.38

0.64

0.11

0.29

0.37

0.11

0.40
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Figure 2: Effects of landscape changes on structure of Neotropical plant-vertebrate pollinator
networks. The effects of forest cover (the opposite of habitat loss) are shown in A) Plant richness; B)
Pollinator richness C) Number of interactions; D) Connectance, E) Nestedness (Z-NODF) and F)
Modularity. R? represents an estimate of how much the adjusted model explains the variation. The dashed

line indicates no significant relationship.

We did not find any relation among the proportion of indirect effects on networks
and the evaluated landscape metrics (Fig. 3A; Table 1). In contrast, cascading effects,
measured by average cascade size, we found a negative relationship with forest cover
(Fig. 2B). Our results, obtained for networks comprising bats and birds (67 networks),
remained consistent when analyzing only hummingbird networks, except for nestedness,
where we did not find significant relationship, and indirect effects, which showed a
positive relationship with forest cover (Fig S3-S4). Although no significant relationship
was found between forest cover and the proportion of indirect effects when considering
all 67 networks, a closer inspection revealed that this result is influenced by three small
bat-pollination networks, which contain fewer nodes and interactions. When the analysis
is restricted to the 48 hummingbird networks, the relationship between forest cover and
the proportion of indirect effects becomes statistically significant (Figure S4). This
suggests that variation in composition across functional groups may influence the overall

pattern observed in the full dataset.
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Figure 3: Effects of landscape changes on the indirect interactions within Neotropical plant—
vertebrate pollination networks. The effects of percentage of forest cover are shown in A) Proportion of
indirect effects, and B) Mean cascade size in networks. R? represents an estimate of how much the adjusted

model explains the variation. The dashed line indicates no significant relationship.

Finally, the networks were highly dissimilar from each other independently of
landscape dissimilarity gradient, both in terms of species composition (Bs) and
interactions (Bwn). However, the drivers of this interaction dissimilarity varied according
to differences in landscape characteristics. We find a positive linear relationship between
landscape dissimilarity caused by species turnover (Bst) and a negative relationship with
interaction rewiring (Bos) (Table 2, Fig. 4A). The partitioning analysis of interaction
turnover revealed that the main driver was the simultaneous replacement of both plants
and pollinators, which occurred most frequently across sites. This was followed, in
importance, by interaction turnover driven primarily by species replacement among
plants (Fig. 4B).

Table 2: Results of statistical models evaluating the influence of landscape dissimilarity on plant—
pollinator interaction dissimilarity. The best model is the fitted model with the lowest AAICc among the
five tested (GLM, GLMM, GAM, Quadratic and GLMM with quadratic term).

s 2
= ® R*=0.41 e®
07- @ : ‘{'J 05- e O’.

100

Best model B (Estimate) SE z value p-value

[s ~landscape dissimilarity + 3.305 2.190 1.509 0.131

(1|subregions)

Bwn ~landscape dissimilarity + 1.362 2.406 0.566 0.571

(1|subregions)

Pos ~landscape dissimilarity + -1.176 0.457 -2.571 0.010

(1|subregions)

Pst ~landscape dissimilarity 1.079 0.393 2.746 0.006



80

.llll - - -':“

Hola dwera iy

Landscaps dssimeamy incex * P }

Figure 4. Beta diversity of plant-pollinator interactions along landscape dissimilarity gradient in the
Neotropics. A) Relationship between beta diversity and landscape dissimilarity for the components of
network dissimilarity. Each line represents a linear model fitted to a given component: s - Dissimilarity in
the species composition of communities, Swn - overall dissimilarity of interactions, and its components
Bos; dissimilarity due only to changes in interactions among shared species: rewiring) and [s; (dissimilarity
of interactions due to species turnover). The points in the graph are colored according to the total amount
of forest between the compared landscapes (sum of forest cover in the two landscapes). Shades of dark
green indicate higher forest amount, while gray indicate lower forest amount. B) Partitioning turnover,

where B is further partitioned into components due to the absence of plant, pollinator and absence of both.

4.Discussion

Our findings show that habitat loss, rather than fragmentation per se, is the
primary driver of changes in the structure of plant—vertebrate pollinator networks in the
Neotropics. Forest loss was associated with declines in plant and pollinator species
richness, as well as a reduction in the total number of interactions. These biodiversity
losses were accompanied by structural shifts in network organization, including increased
connectance, reduced nestedness, and marked species turnover. Moreover, forest loss
contributes to larger cascade sizes within the networks, reducing their overall robustness.

In plant—vertebrate networks, we found that species loss triggers a cascade of
structural changes that undermine the network’s robustness to further extinctions. In our
study, the decrease in plant and pollinator richness led to a decrease in the total number
of interactions, which in turn directly impacted network structure, resulting in two main
structural patterns: increased connectance and reduced nestedness. This effect is
commonly observed in deforested landscapes, where networks become smaller yet more
densely connected. Such patterns are well documented in ecological networks, where
species-poor communities tend to exhibit proportionally higher connectance (Jordano,

1987). A likely explanation is that the number of potential interactions increases with the
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product of plants and pollinator richness. Thus, as the network shrinks, the number of
observed interactions gets closer to the number of potential interactions among the
remaining species (Jordano, 1987). The second effect, reduced nestedness, is a
predictable outcome of species loss, given the well-established positive relationship
between richness and nestedness in ecological networks (Bastolla et al., 2009). This
decline likely results from the loss of specialist species, which often contribute
disproportionately to the nested structure by interacting with highly generalist partners
(Bomfim et al., 2018).

Nested networks are considered resilient, but they are not immune to structural
disturbances from species loss (Thébault and Fontaine, 2010). While superconnected
species help maintain network integrity, the loss of specialists—who interact with subsets
of generalist partners—can significantly disrupt network structure. Specialist species,
which are more vulnerable to environmental change (Aizen et al., 2012; Vidal et al.,
2014), play a key role in maintaining network hierarchy and nestedness, and their
extinction weakens these structural (Bascompte et al., 2003; Bomfim et al., 2018). Their
loss reduces structural coherence, increases the risk of secondary extinctions, and
compromises the system’s ability to absorb disturbances. Such changes affect a key
emergent property: network robustness to species loss (Gaiarsa and Guimaraes, 2019).
Although mutualistic networks initially buffer species loss through nestedness and
interaction redundancy (Memmott et al., 2004), habitat degradation gradually undermines
these mechanisms. Generalists may compensate temporarily for the loss of specialists,
but growing dependence on a few highly connected species increases vulnerability to
cascading extinctions (see Yeakel et al., 2020 for a similar result for food webs). This
progressive breakdown of nestedness and redundancy ultimately threatens the persistence
and functioning of the entire ecological community (Kaiser-Bunbury et al., 2017). Our
results support this view by showing that forest loss increases the risk of cascade
extinction.

We found high species dissimilarity (Bs) and interaction dissimilarity (Bwn) across
the entire gradient of landscape dissimilarity. This pattern was expected, as interaction
dissimilarity often follows the same trend of species dissimilarity within communities
(Poisot et al., 2012). In other words, networks are generally dissimilar regardless of
landscape dissimilarity, due to habitat heterogeneity and local adaptation. However, the
underlying cause of the dissimilarity shifts along the landscape gradient. Although species

turnover constitutes the primary component driving interaction dissimilarity throughout
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the entire gradient of landscape change, differences are observed. At one extreme, in
contrasting landscapes (i.e., sites with high vs. low forest cover), interaction dissimilarity
is primarily explained by species turnover (Bst). When landscape dissimilarity is complete
(i.e. near 1), species turnover becomes the dominant driver, explaining nearly 90% of the
observed interaction dissimilarity. Thus, in such landscapes, the species turnover drives
differences between networks, as habitat loss likely excludes certain species while
favoring others, affecting plant or animal species (Aizen et al., 2012). When partitioning
species-driven interaction turnover, we observed that the majority of the turnover was
explained by the simultaneous replacement of plants and pollinators across landscapes.
This indicates that differences in network structure are largely driven by shifts in the
composition of both trophic groups, rather than changes confined to a single group. The
joint turnover of plants and pollinators suggests that habitat loss impacts multiple levels
of the community simultaneously, leading to reorganization of plant- vertebrate pollinator
networks. These findings reinforce the sensitivity of plants and vertebrates to
anthropogenic disturbances such as habitat loss (Hadley et al., 2014; Rocha-Santos et al.,
2017) and the potential of the loss of species to alter not only components of beta diversity
but also the structure of ecological networks (Bonfim et al., 2023; Carstensen et al., 2014;
Soares et al., 2021).

In similar landscapes, rewiring of interactions emerges (though less prominent) as
an important component of network dissimilarity, likely because the chance of species
coexisting in similar landscapes is higher; however, they may not interact in the same
way, leading to a rearrangement of interactions (White et al., 2022; Poisot et al., 2015).
This suggests that even when the same species persist across sites, variables such as
environmental conditions, local trait distributions, local abundances (neutral process) or
even species invasion (Davis et al., 2025; Valido et al., 2019) may cause interactions to
be reorganized (Carstensen et al., 2014; Poisot et al., 2015; White et al., 2022). The
contrasting patterns of Pst and Pos along the landscape dissimilarity gradient, with st
(species turnover) increasing and Pos (interaction rewiring) decreasing as landscape
dissimilarity increases, suggest that environmental filtering acts differently on species and
interactions ( White et al., 2022).

To conclude, our results show that habitat loss is the main factor driving changes
in the structure of plant—vertebrate pollinator networks in the Neotropics. In contrast, we
did not find consistent or significant effects of fragmentation per se on these interactions.

Although fragmentation might influence specific ecological processes, such as the
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movement of pollinators or edge-related dynamics, its direct contribution to changes in
network structure was not supported by our analyses. This pattern is consistent with a
growing number of studies across different taxonomic groups that also report weak or
inconsistent effects of fragmentation per se (Fahrig et al. 2017, Galan-Acedo et al. 2019a,
b). Our results collectively demonstrate how habitat loss initiates a cascade of changes
that alter species composition and interaction patterns, ultimately compromising the
resilience and persistence of plant—vertebrate pollination networks. Based on this
evidence, we argue that the most effective strategy for conserving vertebrate pollination
interactions is to focus on maintaining and restoring forest cover. While small habitat
fragments can still play important roles by enhancing connectivity and supporting some
ecosystem services, it is the overall amount of forest that best explains the integrity of

plant—vertebrate pollinator networks in highly modified landscapes.
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Habitat loss, not fragmentation per se, drives structural changes and species turnover in plant—vertebrate pollinator networks

TABLES

Table S1: Description of the 67 plant-vertebrate pollinator networks on Neotropics.

Plant Pollinator
Network ID* lat long richness richness Interactions | Vertebrate group Sampling method

1 -16.96 | -65.41 6 3 8 hummingbirds transect

2 -17.51 | -63.64 3 6 9 hummingbirds transect

3 -20.75 | -42.91 14 8 32 hummingbirds focal observation
4 -20.75 | -42.91 5 5 12 hummingbirds focal observation
5 -22.50 | -44.83 31 5 73 hummingbirds focal observation
6 -13.81 | -39.20 18 13 52 hummingbirds focal observation
7 -3.82 | -70.27 30 15 97 hummingbirds focal observation
8 12.10 | -61.70 7 2 10 hummingbirds focal observation
9 15.35 -61.30 12 3 19 hummingbirds focal observation
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10 1525 | -61.37 11 2 14 hummingbirds focal observation
11 18.35 | -77.65 6 2 7 hummingbirds focal observation
12 18.13 | -66.76 11 2 13 hummingbirds focal observation
13 -22.75 | -47.11 6 2 12 bats NA
14 245 | -47.25 2 2 4 bats focal observation
15 -28833 | -59.93 5 3 7 bats focal observation + mist nets
16| -23.33 | -44.83 29 5 42 hummingbirds mist nets
17| -15.21 | -39.20 6 23 39 birds focal observation
18| 4.83 -52.7 14 2 24 bats pollen collection
191 -9.71 |-76.16 26 12 45 hummingbirds focal observation + transect
200 0.12 -78.63 29 14 110 hummingbirds camera
21 0.12 -78.60 48 20 197 hummingbirds camera
221 125 | -77.43 31 9 79 hummingbirds focal observation
- focal observation + pollen
23| -2.629 | 60.050 3 8 11 bats collection
24| -25.44 | -48.92 8 10 19 hummingbird/bats | focal observation + mist nets
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25| -27.26 | -49.02 18 6 29 hummingbirds focal observation
26| -27.26 | -49.02 10 5 16 hummingbirds focal observation
27| -2727 | -49.01 7 5 15 hummingbirds focal observation
28 10.18 | -84.11 20 9 41 hummingbirds camera
291 10.44 | -84.01 22 8 48 hummingbirds camera
30( 10.27 | -84.08 25 8 37 hummingbirds camera
31| -2531 |-48.70 28 10 59 hummingbirds focal observation
- feces collection
32| 22.855 |82.964 5 3 9 bats
- feces collection
33| 22.841 |82.924 5 4 8 bats
34| -2333 | -44.83 16 5 22 hummingbirds focal observation
35| -23.36 | -44.85 22 13 58 hummingbirds focal observation
36| -23.32 | -44.94 28 11 &0 hummingbirds focal observation
37| 3.87 |-76438 6 6 21 bats pollen collection
- pollen collection
38(0.204462 | -79 7 2 12 bats
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0.416699

pollen collection

39 -79 8 2 14 bats
40| 15.66 | -92.81 28 11 45 hummingbirds focal observation
41| 15.63 | -92.81 25 9 38 hummingbirds focal observation
42| 1559 |-92.85 7 4 12 hummingbirds focal observation
43| -25.15 | -48.27 13 7 23 hummingbirds focal observation
44 2.51 -76.98 19 14 55 hummingbirds transect
45 2.66 -76.95 27 8 55 hummingbirds transect + mist nets
46| -24.25 | -48.17 45 20 119 birds focal observation
47 24 -47.75 3 14 22 birds focal observation
48| -23.07 | -43.88 5 7 18 hummingbirds/birds | focal observation
49 0.07 -72.45 44 8 88 hummingbirds focal observation
50| -24.2 | -48.05 15 8 29 hummingbirds focal observation
51| -24.45 -48.68 23 11 59 hummingbirds focal observation
52| -23.56 | -45.36 31 5 29 hummingbirds focal observation
- focal observation
53| -23.596 |45.417 8 4 32 bats
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54| -871 | -35.84 17 3 34 hummingbirds focal observation
55| -23.63 | -45.87 26 6 53 hummingbirds focal observation
56| -3.97 | -79.07 13 9 35 hummingbirds focal observation + camera
57 -4.11 | -79.17 17 8 44 hummingbirds focal observation + camera
58| -4.11 |-78.97 15 7 34 hummingbirds focal observation + camera
591 18.41 | -66.71 8 2 12 bats feces collection
60| -22.41 -42.74 2 4 7 hummingbirds focal observation
61| -2.86 -79.11 20 8 66 hummingbirds focal observation + camera
- focal observation + pollen
62| 10.423 | 84.022 3 4 5 bats collection
- pollen collection
63| 10.423 | 84.022 16 4 50 bats
64| -19.98 | -40.52 21 23 61 hummingbirds focal observation
65| -23.40 | -45.18 55 9 123 hummingbirds focal observation
66| -0.02 |-78.77 65 19 191 hummingbirds focal observation
67(-19.95  |-40.51 |37 88 hummingbirds focal observation
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Table S2: Results of model selection evaluating the relationship between landscape
dissimilarity and beta diversity. AAIC values for different model types explaining the
variation in interaction dissimilarity (B-diversity) across four dissimilarity indices: s,
Bos, pwn, and Bst. Lower AAIC values indicate better model parsimony. For each index,
the model with the lowest AAIC is highlighted in bold.

Bs Bun Bos Bst
A AIC
Linear model - GLM 104.56 8.56 3.6 0.0
Quadratic model 106.59 10.56 4.52 2.03
Linear mixed model - GLMM 0.0 0.0 0.0 0.28
Linear mixed model with
quadratic term 1.88 1.46 1.33 0.26

Additive model - GAM 104.56 8,56 3.19 0.56
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TABLE S3: Comparison of models assessing the effect of forest cover, and the effects
of fragmentation per se (i.e. forest cover and patch density) on vertebrate pollinator
networks in the Neotropical rainforest. Numbers after the model type indicate the scale
of effect of each landscape predictor. AICc = Akaike Information Criterion corrected for
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Figure S1: Pearson correlation among the environmental variables: temperature,
precipitation and elevation. The values inside the figure represent the coefficient of
correction. The * symbol indicates significant correlation. Negative values indicate a
negative correlation between variables.
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Figure S3: Effects of landscape changes on structure of Neotropical hummingbird
pollination networks. The effects of edge density are shown in A) Number of plant
species B) Number of pollinator species; C) Number of interactions; D) Connectance, and
the effect of percentage of forest cover are shown in E) ZNODF and F) Modularity. R?
represents an estimate of how much the adjusted model explains the variation. The dashed
line indicates no significant relationship.
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Figure S4: Effects of landscape changes on structure of Neotropical hummingbird
pollination networks. The effects of percentage of forest cover are shown in A)
Proportion of indirect effects, and the effects of forest edge density are shown in B) Mean
cascade size in networks. R? represents an estimate of how much the adjusted model
explains the variation.
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CONSIDERACOES FINAIS

Ao longo desta tese, buscamos entender como as redes de interagdes entre plantas
e polinizadores vertebrados, especificamente beija-flores e morcego sdo moldados por
forcas que atuam em escalas diferentes: de um lado, os processos historicos e
biogeograficos que ocorreram ao longo de milhdes de anos; de outro, as transformagdes
rapidas e intensas que nos, humanos, temos provocado nas paisagens tropicais. Os
resultados mostram que essas interacdes sdo fruto de um delicado equilibrio entre o
legado evolutivo e ecoldgico dos organismos, hoje sob diferentes pressdes devido a
mudancgas na paisagem. A historia biogeografica da regido Neotropical ¢ marcada por
eventos como o soerguimento dos Andes, a formagao de ilhas e pontes terrestres, o que
deixou marcas profundas, determinando quem est4 presente hoje nas comunidades e as
interagdes que se estabelecem.

O conservadorismo de nicho emerge como um fator importante, indicando que a
historia evolutiva segue moldando os padrdes de interacao, mesmo diante de ecossistemas
dinamicos e em constante transformagao. Por outro lado, as mudangas nas paisagens,
como o desmatamento, também sdo capazes de reconfigurar as redes ecologicas. Ao
reduzir a quantidade de habitat disponivel, essas transformagdes afetam diretamente quais
espécies conseguem persistir naquele ambiente e, consequentemente, como elas
interagem. Isso se reflete na alteragdo da composicdo e da estrutura das redes de
interagdes. Um resultado particularmente importante deste trabalho ¢ que o grau de
fragmentacdo, ou seja, o quanto a paisagem esta dividida em pedagos menores, ndo se
mostrou um fator determinante para a estrutura das interagdes entre plantas e
polinizadores. Isso sugere que, mesmo em paisagens fragmentadas, as interagdes
ecoldgicas podem ser mantidas, desde que haja uma quantidade minima de habitat
disponivel. Esse achado reforga o potencial valor de paisagens fragmentadas para a
conservagao da biodiversidade e dos processos ecoldgicos, especialmente nas florestas
tropicais. Dessa forma, essa tese oferece uma visdo integrada de como processos
historicos e contemporaneos atuam juntos na constru¢do e na manutengao das redes de
interagdes. E, nesse contexto, compreender as for¢as que moldam essas redes, sejam elas
geoldgicas, evolutivas ou antropicas, € um passo essencial para planejar estratégias de

conservagao mais eficazes, sensiveis a historia, a ecologia e as urgéncias do antropoceno.



