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APLICACOES DO MONITORAMENTO ACUSTICO PASSIVO EM CETACEOS E O
CANTO DA BALEIA-JUBARTE (Megaptera novaeangliae) COMO MODELO EM
ESTIMATIVAS DE ABUNDANCIA

RESUMO

O monitoramento acustico passivo (MAP) tem se consolidado como uma ferramenta valiosa e
em constante expansao no estudo dos cetaceos. Por meio de diferentes abordagens, esse método
tem viabilizado a obtencdo de informacgdes ecoldgicas relevantes em regides-chave de
ocorréncia do grupo, como areas de alimentagdo, corredores migratorios e areas reprodutivas.
A capacidade dos cetaceos de permanecerem submersos por longos periodos, aliada a intensa
atividade acustica exibida por muitas espécies, torna 0 MAP uma abordagem especialmente
eficaz para registros continuos e ndo invasivos, inclusive em locais remotos onde a aplicacao
de métodos tradicionais baseados em observacdo visual é limitada. Nesse contexto, esta tese
teve como objetivo geral avaliar as aplicacbes do MAP no estudo de cetaceos, com énfase na
andlise do canto da baleia-jubarte (Megaptera novaeangliae), como potencial indicador de
abundancia populacional. Na primeira etapa, foi realizada uma revisdo sistematica da literatura,
considerando apenas estudos que utilizaram gravadores acusticos autdbnomos fixos de forma
exclusiva, sem integragdo com métodos visuais. Foram analisados 138 artigos publicados em
periddicos revisados por pares entre 2007 e 2024. A analise destacou as regifes acessadas, as
espécies-alvo e os tipos de informacdo bioldgica obtida. Observou-se uma predominancia de
estudos no Hemisfério Norte, mas com crescimento expressivo no Hemisfério Sul a partir de
2014. Entre os misticetos, destacaram-se a baleia-fin (Balaenoptera physalus) e a baleia-
jubarte; entre os odontocetos, o cachalote (Physeter macrocephalus) e a orca (Orcinus orca). A
maioria dos estudos abordou padrGes de ocorréncia e uso do habitat, enquanto parametros
populacionais ainda sdo menos explorados. Fatores como a distribui¢do global das espécies, as
caracteristicas de suas vocalizagoes e as desigualdades no acesso a tecnologia e financiamento
cientifico entre regiGes parecem influenciar a representatividade das espécies nos estudos
analisados. Na segunda etapa, foram avaliadas métricas acusticas extraidas do canto dos machos
de baleias-jubarte pertencentes ao Estoque Reprodutivo A. Os registros acusticos foram
realizados na regido sul da Bahia, Brasil, nos anos de 2014, 2015, 2018 e 2019. As métricas
incluiram o nivel de pressdo sonora quadratico médio (SPL RMS), os niveis de banda de 1/3 de
oitava (TOL), o indice de complexidade acustica (ACI) e o nimero de cantores (em uma escala
de 0 a4). Esses dados acusticos foram comparados a estimativas visuais de abundancia relativa.
Os resultados mostraram que 0 SPL RMS e o0 nimero de cantores foram os indicadores mais
consistentes em refletir os padrdes sazonais e interanuais de abundancia, embora cada métrica
apresente limitacdes especificas. O ACI mostrou-se instavel e sensivel a variagdes estruturais
no canto, enquanto o TOL permitiu identificar as faixas de frequéncia mais associadas a
vocalizacdo da espécie. Conclui-se que o MAP, tanto em sua aplicacdo isolada quanto em
combinag¢do com outros métodos, constitui uma abordagem eficaz para o monitoramento
ecologico de cetadceos. Além de ampliar o acesso a areas e espécies anteriormente
subamostradas, 0 uso de métricas acusticas para estimar a abundancia mostra-se promissor
como ferramenta complementar as estratégias tradicionais de monitoramento populacional e
conservacao.

Palavras-chave: Cetaceo; Megaptera novaeangliae; Monitoramento acustico passivo;
métricas acusticas; canto; abundancia.



APPLICATIONS OF PASSIVE ACOUSTIC MONITORING IN CETACEANS AND
THE HUMPBACK WHALE’S SONG (Megaptera novaeangliae) AS A MODEL FOR
ESTIMATING ABUNDANCE

ABSTRACT

Passive acoustic monitoring (PAM) has become a valuable and steadily expanding tool for the
study of cetaceans. Through a variety of approaches, this method enables the collection of
ecologically relevant information in key areas of cetacean occurrence, including migratory
corridors, feeding and breeding grounds. The ability of cetaceans to remain submerged for long
periods, combined with the intense acoustic activity exhibited by many species, makes PAM
an especially effective approach for continuous and non-invasive recordings, including in
remote locations where the use of traditional visual observation methods is limited. In this
context, the general objective of this thesis was to assess the applications of PAM in cetacean
research, with an emphasis on the analysis of humpback whale (Megaptera novaeangliae) song
as a potential indirect indicator of population abundance. In the first stage, a systematic
literature review was conducted, considering only studies that used fixed autonomous acoustic
recorders exclusively, without integration with visual methods. A total of 138 articles published
in peer-reviewed journals between 2007 and 2024 were analyzed. The analysis focused on the
accessed regions, target species, and types of biological information obtained. A predominance
of studies was observed in the Northern Hemisphere, although the Southern Hemisphere
showed significant growth from 2014 onward. Among mysticetes, the most frequently studied
species were the fin whale (Balaenoptera physalus) and the humpback whale; among
odontocetes, the sperm whale (Physeter macrocephalus) and the killer whale (Orcinus orca)
stood out. Most studies addressed occurrence patterns and habitat use, while population
parameters remain less explored. Factors such as the global distribution of species, the
characteristics of their vocalizations, and inequalities in access to technology and scientific
funding across regions appear to influence the representativeness of species in the analyzed
studies. In the second stage, acoustic metrics extracted from the songs of male humpback
whales belonging to Reproductive Stock A were evaluated. Acoustic recordings were
conducted in the southern region of Bahia, Brazil, in the years 2014, 2015, 2018, and 2019. The
metrics included root mean square sound pressure level (RMS SPL), 1/3 octave band levels
(TOL), the Acoustic Complexity Index (ACI), and the number of singers (on a 0 to 4 scale).
These acoustic data were compared with visual estimates of relative abundance. The results
showed that RMS SPL and the number of singers were the most consistent indicators of
seasonal and interannual abundance patterns. Although each metric had specific limitations.
ACI proved unstable and sensitive to structural variations in the song, while TOL was useful in
identifying the frequency bands most associated with the species’ vocalizations. In conclusion,
PAM—whether applied in isolation or integrated with other methods—constitutes an effective
approach for the ecological monitoring of cetaceans. In addition to improving access to under-
sampled areas and species, the use of acoustic metrics for estimating abundance shows promise
as a complementary tool to traditional population monitoring and conservation strategies.

Keywords: Cetaceans; Megaptera novaeangliae; Passive acoustic monitoring; Acoustic
metrics; Song; Abundance.
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1. INTRODUCAO GERAL

1.1. Contextualizacdo: monitoramento acustico da paisagem

Os sons que compdem uma paisagem sonora variam tanto no espago quanto no tempo,
resultando da integracdo de diferentes tipos de fontes sonoras. De modo geral, esses sons séo
classificados em trés componentes principais que estruturam o que foi definido como paisagem
acustica (PIJANOWSKI et al., 2011a): i- a biofonia, referente aos sons produzidos por animais,
como por exemplo, vocalizacGes de aves e mamiferos; ii- a geofonia, relacionada aos sons de
origem geofisica e metereolodgica, tais como vento e chuva; e iii- a antropofonia, associada as
atividades humanas, incluindo o trafego de veiculos, embarca¢des, maquinas, dentre outras
fontes sonoras geradas pelo homem (PIJANOWSKI et al., 2011a, 2011b).

Entre os componentes da paisagem acustica, a biofonia tem se destacado como uma
importante fonte de dados bioacUsticos e ecoldgicos. Os sons emitidos pelos animais séo
altamente informativos e podem se propagar em multiplas direcfes, atravessar obstaculos
fisicos e percorrer distancias relativamente longas (BRADBURY; VEHRENCAMP, 1998;
WILKINS; SEDDON; SAFRAN, 2013). Por esse motivo, levantamentos acusticos representam
uma estratégia particularmente eficaz para 0 monitoramento de espécies com o comportamento
vocal mais ativo, especialmente aquelas que sdo dificilmente detectadas visualmente
(ROSENTHAL; RYAN, 2000; ZIMMER et al., 2011; HEINICKE et al., 2015).

As observacdes acusticas podem ser realizadas de forma ativa ou passiva. Na acustica
ativa, ha a emissdao de um sinal sonoro no ambiente e a subsequente analise do eco refletido,
permitindo a deteccdo e caracterizacdo de organismos e/ou estruturas (MELLINGER et al.,
2007; AU; HASTINGS, 2008). J& na acustica passiva, 0 equipamento apenas registra 0s sons
presentes no ambiente (MELLINGER et al., 2007; ZIMMER, 2011). Com base nesse principio,
0 monitoramento acustico passivo (MAP), consiste no registro ndo invasivo do ambiente
sonoro, uma vez que o0s gravadores ndo adicionam ruido, permitindo documentar sua

composicao e variagdo ao longo do tempo (BROWNING et al., 2017).

A possibilidade de registrar sons em campo de forma sistematica representou um avanco
significativo na pesquisa cientifica (SUGAI et al., 2019). A introducdo dos gravadores digitais
trouxe melhorias que vao desde a maior qualidade do registro, até a reducdo dos custos na
aplicacdo do método (OBRIST et al., 2010; SUGAI et al., 2019). Com a introducdo dos
gravadores autdbnomos, as abordagens de pesquisa se expandiram ainda mais, pois, esses

dispositivos permitem gravacdes continuas ou programadas por longos periodos, aumentando
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a cobertura temporal e a possibilidade de monitorar diferentes aspectos ecoldgicos e ambientais.
Os gravadores autdbnomos podem ser moveis ou fixos (MELLINGER et al., 2007). Os
dispositivos mdveis podem ser rebocados por navios (e.g., YACK et al., 2013) ou planadores
(e.g., BITTENCOURT et al., 2018), dentre outras plataformas, oferecendo ampla cobertura
espacial e a possibilidade de integracdo com levantamentos visuais (MELLINGER et al., 2007).
Ja os gravadores fixos permanecem posicionados em um ponto especifico, permitindo maior
cobertura temporal e monitoramento continuo do ambiente acustico (MELLINGER et al., 2007;
SOUSA-LIMA et al., 2013).

Por meio dos gravadores acusticos autbnomos, a paisagem sonora de diversos habitats
— terrestres e marinhos, naturais e antropizados — tem sido investigada (e.g., SUGAI et al.,
2019; DARRAS et al., 2025). A possibilidade de programar a gravacao para registro continuo
ou em intervalos previamente definidos, elimina a necessidade de presenca constante do
pesquisador, reduz custos operacionais e minimiza interferéncias no comportamento natural
dos organismos, além de evitar a introducéo de ruidos adicionais no ambiente (SOUSA-LIMA
etal., 2013; BROWNING et al., 2017).

Os registros obtidos sdo processados em softwares especializados, que permitem
analisar as caracteristicas espectrais dos sinais acusticos e extrair informagoes bioacusticas,
como parametros de frequéncia e energia, e ecoldgicas, como ocorréncia, uso do habitat,
riqueza e diversidade de espécies, densidade populacional e comportamento (e.g., AU et al.,
2013; HILDEBRAND et al., 2015; KALAN et al., 2015; RICE et al., 2021; MORALES et al.,
2022). Esses dados podem ser analisados em diferentes escalas temporais, possibilitando a
identificacdo de padrdes diarios, sazonais e interanuais (e.g., RICE et al., 2021; PILKINGTON
et al., 2023). A continuidade da amostragem ao longo do tempo também permite detectar
mudangas e tendéncias nos padrdes sonoros, sejam elas associadas a processos naturais ou a
impactos antrépicos (e.g., WINN; WINN, 1978; GOMES et al., 2022; MCCAULEY et al.,
2018).

1.2. O estudo da biofonia marinha

As paisagens sonoras terrestres tém sido foco de estudos acusticos ambientais ha mais
de 40 anos (e.g., TRUAX, 1978). Em contrapartida, no ambiente marinho, embora o registro
de sons subaquaticos ja fosse realizado no ambito da geofonia desde a decada de 1960, foi
apenas a partir dos anos 1990 que os gravadores acusticos autbnomos passaram a ser aplicados
ao estudo da biofonia (MCDONALD, HILDEBRAND, WEBB, 1995). Nesse periodo, diversos
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laboratérios comecaram a desenvolver seus proprios equipamentos, o que contribuiu para a
reducdo dos custos — até entdo um dos principais obstaculos a aplicacdo da bioacustica em
ambientes marinhos (MELLINGER et al., 2007; SOUSA-LIMA et al., 2013). Entre os avangos
tecnoldgicos alcancados, destacam-se as melhorias na capacidade de armazenamento de dados
e na autonomia das baterias, que viabilizaram o registro de sons subaquéticos por periodos mais
longos e com maior resolucdo temporal, além das melhorias na taxa de amostragem dos
equipamentos, que permitiram a coleta de dados em faixas de frequéncia mais amplas (SOUSA-
LIMA et al., 2013; SUGAI et al., 2019).

Esses avancos, no entanto, ndo atuam isoladamente. A aplicagdo do MAP no ambiente
marinho também se beneficia das propriedades fisicas do meio aquatico, que favorecem a
propagagdo da onda sonora. Em comparagao com o ar, na &gua 0 som se propaga cerca de cinco
vezes mais rapido, podendo, em determinadas condicOes, percorrer milhares de quilémetros
(HAWKINS; MYRBERG, 1983; BRADBURY; VEHRENCAMP, 1998; RICHARDSON et
al., 2013). Esse potencial de propagacdo supera o alcance dos sinais visuais e gquimicos,
tornando o som, nesse contexto, o0 meio de comunicacdo mais eficiente (BRADBURY;
VEHRENCAMP, 1998). Como consequéncia, muitas espécies marinhas exibem
especializacBes acusticas que proporcionam vantagens adaptativas ao meio e sao utilizadas na

realizacdo de atividades essenciais como navegacdo, forrageamento e reproducdo (AU, 2000).

No contexto da biofonia, 0s sons emitidos por crustaceos, peixes e cetaceos se destacam
como 0s principais componentes da paisagem acustica marinha. Essas emissdes variam ao
longo de ciclos diarios e sazonais, refletindo processos ecolégicos e fornecendo informacdes
valiosas sobre a dindmica ambiental (e.g., LAMMERS et al., 2008; RADFORD et al., 2008;
BITTENCOURT et al., 2016; BUSCAINO et al., 2016; PIERETTI et al., 2017; SANCHEZ-
GENDRIZ; PADOVESE, 2017a, 2017b). Crustaceos, como camardes e lagostas, emitem sons
pulsados e estalidos de banda larga, com componentes de frequéncia que chegam até 200 kHz
(AU; BANKS, 1998). Esses organismos sdo fontes persistentes e predominantes no ambiente
acustico de aguas rasas, especialmente em regides tropicais e subtropicais (e.g., BUSCAINO et
al., 2016). Os peixes sdo conhecidos por produzirem sons impulsivos ou modulados,
geralmente em baixa frequéncia e amplitude (AMORIM et al., 2006). Suas emissdes acusticas
estdo associadas a comunicacgdo, reproducdo, mecanismo de defesa e comportamentos
agonisticos (e.g., TAVOLGA, 1960; CODARIN et al., 2009; SLABBEKOORN et al., 2010;
LADICH, 2013). Os cetaceos, por sua vez, produzem uma ampla gama de sons pulsados e

tonais com diferentes finalidades, cujas caracteristicas acusticas variam entre 0s grupos (i.e.,
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odontocetos e misticetos). De modo geral, os odontocetos vocalizam em uma faixa extensa de
frequéncias, que vai de aproximadamente 5 kHz a mais de 135 kHz, enquanto os misticetos
emitem sons predominantemente em frequéncias mais baixas, entre cerca de 14 Hz e 5 kHz
(AU, 2000).

Dentre esses componentes da biofonia, 0s cetaceos apresentam caracteristicas que
favorecem as aplicacdes do MAP em seu estudo, como a diversidade de repertorio vocal, a
ampla mobilidade e o papel ecoldgico que desempenham nos ecossistemas marinhos
(ZIMMER, 2011). O método acustico tem se mostrado especialmente eficaz para a detec¢cdo
desses animais, pois permite o registro continuo e ndo invasivo de suas vocaliza¢gdes, mesmo
em éareas de dificil acesso ou sob condi¢cdes ambientais que comprometem a observacdo visual
(e.g., MELLINGER et al., 2007; SOUSA-LIMA et al., 2013).

1.3.  Producéo de som nos cetaceos

Os cetaceos constituem um grupo de mamiferos aquaticos incluidos na ordem
Cetartiodactyla, embora sua classificagdo taxonémica interna (por exemplo, em subordem ou
infraordem) ainda seja alvo de discussdo (FORDYCE; PERRIN, 2025). Tradicionalmente, séo
divididos em dois grupos: Odontoceti, sendo representado pelos cetdceos que possuem dentes,
como os botos e golfinhos e Mysticeti, incluindo os cetaceos que possuem barbatanas, como é
0 caso das grandes baleias, também chamadas de baleias verdadeiras (REEVES; FOLKENS,
2002; WILSON; REEDER, 2005; FORDYCE; PERRIN, 2025). Esses organismos ocupam
desde areas costeiras e oceanicas, até rios e estuarios (LODI; BOROBIA; FOLKENS, 2013.
Em linhas gerais, suas emissdes acuUsticas podem ser divididas em sons vocais — produzidos
por 6rgdos especializados — e sons ndo vocais — gerados por interacBes mecanicas com a agua
ou entre partes do corpo (CLARK, 1990; HERZING, 2006).

A producdo sonora por meio de 6rgados especializados tem sido amplamente investigada
nos cetaceos (e.g., CALDWELL; CALDWELL, 1971; PAYNE; MCVAY, 1971; HERMAN;
TAVOLGA, 1980; SHARPE et al., 1998; JOHNSTON et al., 2008; VARGA; WIGGINS;
HILDEBRAND, 2018; MADSEN; SIEBERT; ELEMANS, 2023; ELEMANS et al., 2024).
Sabe-se que enquanto os odontocetos produzem sons por meio de estruturas nasais (MADSEN,;
SIEBERT; ELEMANS, 2023), os misticetos desenvolveram estruturas laringeas especializadas
com adaptacdes unicas entre os mamiferos (ELEMANS et al., 2024).

Nos odontocetos, as vocalizagdes sdo comumente classificadas em (i) sons tonais de

frequéncia modulada, conhecidos como assobios, e (ii) sinais pulsados de banda larga, que
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englobam tanto os cliques de ecolocalizacdo, quanto os sons pulsados explosivos (AU, 2000).
Os assobios e os sons pulsados explosivos estdo associados a comunicacgdo social — sendo 0s
assobios, também relacionados ao reconhecimento individual (HERMAN; TAVOLGA, 1980).
Os cliques de ecolocalizacgéo, por sua vez, sdo utilizados principalmente para a navegacao e
forrageamento (AU, 2000).

Nos misticetos, as vocalizac¢Ges dividem-se em (i) chamados e (ii) canto (CLARK, 1990;
AU, 2000). Os chamados sdo sinais acusticos emitidos em interacdes sociais e apresentam
ampla variacéo estrutural, podendo ser simples, como gemidos de baixa frequéncia; complexos,
como gritos e rugidos de banda larga; ou ainda breves e impulsivos, como estalos e grunhidos.
O canto, por outro lado, é caracterizado por uma sequéncia ritmica e altamente estruturada de
unidades sonoras repetidas ao longo do tempo (PAYNE; MCVAY, 1971; CLARK, 1990).
Documentado sobretudo em machos de baleia-jubarte, evidéncias sugerem que esse
comportamento estd associado ao sistema reprodutivo da espécie, mas até hoje sua
funcionalidade exata permanece em debate (e.g., WINN; WINN, 1978; HERMAN;
TAVOLGA, 1980; DARLING; BERUBE, 2001; DARLING; SOUSA-LIMA, 2006;
HERMAN, 2017).

Em contraste as vocaliza¢@es, 0s sons ndo vocais sdo produzidos por mecanismos que
ndo envolvem estruturas anatdbmicas especializadas para a emissao sonora. Entre esses,
destacam-se 0s comportamentos percussivos — a¢des que geram som por meio do impacto de
partes do corpo com a superficie da &gua — como ocorre em saltos e batidas com as nadadeiras
peitorais ou caudais (e.g., WHITEHEAD, 1985; WELLER et al., 1996; WEINRICH; BELT;
MORIN, 2001). Tais comportamentos tém sido documentados em diversas espécies de
odontocetos, como o golfinho-rotador (Stenella longirostris) (e.g., NORRIS et al., 1994), o
boto-cinza (Sotalia guianensis) (e.g., ANDRADE; SICILIANO; CAPISTRANO, 1987) e o
cachalote (Physeter macrocephalus) (e.g., WATERS; WHITEHEAD, 1990); bem como em
misticetos, como a baleia-jubarte (Megaptera novaeangliae) (e.g., WHITEHEAD, 1985;
PACHECO et al., 2013), a baleia-franca-do-sul (Eubalaena australis) (e.g., CLARK, 1982) e
a baleia-franca-da-Groelandia (Balaena mysticetus) (e.g., WURSIG et al., 1989). Estudos
sugerem que 0s sons gerados durante essas atividades podem atuar como sinais eficazes de
comunicacgdo, com potencial de propagacéo por longas distancias (CLARK, 1990; HERMAN;
TAVOLGA, 1980). No entanto, essas manifestagdes também podem cumprir funcbes nao
comunicativas, como a remocéo de ectoparasitas (PERRIN; GILPATRICK, 1994). Embora os

sons ndo vocais sejam comumente associados as exibigdes percussivas — também chamadas
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de comportamento de superficie —, é importante destacar que outros mecanismos também
podem gerar som e se enquadram nesta categoria. Um exemplo s&o os sons resultantes da
emissdo de bolhas pelos espiraculos, os quais produzem ruidos de banda larga (e.g., PRYOR,
1986; FRIPP, 2005).

Estudos mostram que 0s comportamentos acusticos vocais e ndo vocais, quando
inseridos em contextos comunicativos, podem ser ajustados em resposta a variaveis ambientais,
como as variaces de luminosidade e os niveis de ruido subaquético (e.g., AU et al., 2000;
PARKS; CLARK; TYACK, 2007; DUNLOP; CATO; NOAD, 2010). Essa plasticidade no uso
dos sinais sonoros destaca o papel fundamental do som na ecologia desses organismos, além de

dar énfase ao potencial informativo do MAP.
1.4.  AplicacGes da bioacustica no estudo dos cetaceos

A capacidade dos cetaceos de permanecerem submersos por longos periodos, aliada a
intensa atividade acustica exibida por muitas espécies, torna 0 monitoramento acustico
particularmente eficaz para o estudo do grupo (ZIMMER, 2011). Por meio da deteccdo de seus
sinais sonoros, 0 MAP possibilita registrar a presenca de individuos mesmo sem contato visual,
superando limitagcBes impostas por fatores ambientais como variagdes de luminosidade, chuva
ou neblina (MELLINGER et al., 2007; SOUSA-LIMA et al., 2013). O uso de gravadores
acusticos autbnomos tem impulsionado avan¢cos no conhecimento ecolégico dos cetaceos
permitindo o monitoramento continuo de regides remotas ou de dificil acesso — como areas
polares em determinadas épocas do ano (e.g., MOORE et al., 2012) —, além da deteccdo de
espécies cripticas ou com baixa densidade populacional, que raramente sdo observadas por
métodos visuais (e.g., OSWALD; AU; DUENNEBIER, 2011; RAYMENT et al., 2011;
MILLER et al., 2015).

O reconhecimento de padrdes acusticos especificos e a identificacdo de espécies com
base em suas vocalizagdes (e.g., BAUMGARTNER et al., 2008; HELBLE et al., 2020) tém
viabilizado a obtencdo de informagdes sobre ocorréncia, uso do habitat e impactos antropicos
em escalas temporais e espaciais refinadas. Em alguns casos, os dados acusticos, por si so, tém
se mostrado suficientes para alcancar esses objetivos, dispensando a necessidade de
observagdes visuais complementares (e.g., SOUSA-LIMA; CLARK, 2008; ACKLEH et al.,
2012; STANISTREET et al., 2018; AHONEN et al., 2021). Uma aplicacdo mais recente do

MAP e com resultados promissores é sua aplicagdo em estimativas de densidade populacional
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(e.g., MARQUES et al., 2009; ACKLEH et al., 2012; MARTIN et al., 2013; MARQUES et
al., 2013; NOAD; DUNLOP; MARCK, 2017; KUGLER et al., 2021). No entanto, sua
aplicacdo depende de variaveis biologicas e comportamentais especificas da espécie-alvo.
Fatores como a taxa de vocalizacdo, a estrutura dos sinais sonoros, bem como o contexto
comportamental em que sdo emitidos, influenciam diretamente a precisdo e acuracia das

estimativas. Assim, ndo existe um protocolo Unico aplicavel a todas as espécies.

Nos odontocetos, os cliques de ecolocalizacdo tém se mostrado uma ferramenta eficaz
em estimativas de abundancia, uma vez que apresentam caracteristicas espectrais e temporais
altamente regulares e especificas, permitindo sua identificacdo em nivel de espécie (e.g.,
HILDEBRAND et al., 2015). Essa regularidade é observada em diferentes grupos, como o
cachalote, a toninha e as baleias bicudas (e.g., ACKLEH et al., 2012; HILDEBRAND et al.,
2015; OWEN; SKOLD; CARLSTROM, 2021; LI et al., 2021). Um estudo conduzido no Golfo
do México utilizou essas informacdes para identificar acusticamente diferentes espécies de
baleias-bicudas (familia Ziphiidae) e, com base no conhecimento prévio sobre o intervalo entre
cliques, estimar suas densidades. Para isso, foram aplicadas duas abordagens complementares:
(i) a contagem de cliques individuais, baseada na taxa media de emissdo por animal e na
probabilidade de deteccdo dos sinais; e (ii) a contagem de grupos, baseada na presencga de
cliques em janelas de tempo fixas, incorporando estimativas de tamanho de grupo, grau de
sobreposicdo vocal e proporcdo de tempo em que 0s animais vocalizam durante os ciclos de
mergulho (HILDEBRAND et al., 2015). Esse tipo de analise s6 € possivel porque os cliques
dessas espécies sao bem definidos, curtos e regulares.

Em contraste, para espécies que produzem vocaliza¢cdes mais complexas e prolongadas
— como o canto da baleia-jubarte — esse tipo de individualizagcdo dos sinais pode ndo ser
viavel. Durante o periodo reprodutivo, o coro dos machos domina a paisagem acustica
(BITTENCOURT et al., 2016), dificultando a separacdo de cantores individualmente
(DUNLOP; FRERE, 2023). Nesses contextos, tém sido propostas abordagens alternativas,
como a analise dos niveis de pressdo sonora (SPL) da paisagem acustica. AU et al. (2000)
propuseram que medidas calibradas da intensidade do coro poderiam refletir variacbes na
abundancia, hipotese posteriormente explorada por estudos que associaram niveis de SPL a
densidade de baleias (e.g., KUGLER et al., 2021).

De todo modo, ha consenso na literatura de que, para que estimativas de abundancia

sejam obtidas a partir de dados acusticos, é fundamental um conhecimento prévio detalhado
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sobre a bioacustica da espécie-alvo, incluindo seus padrdes de emissdo e comportamento vocal
(MARQUES et al., 2013; NOAD; DUNLOP; MACK, 2017).

1.5. OBJETIVO GERAL
Diante do potencial exploratorio do MAP, esta tese buscou avaliar suas diferentes
aplicabilidades no estudo dos cetaceos, com énfase na analise do canto da baleia-jubarte, como

potencial indicador de densidade populacional.

1.5.1. OBJETIVOS ESPECIFICOS

Capitulo I: Avaliar as diferentes aplicabilidades do MAP no estudo dos cetaceos por
meio do uso exclusivo de gravadores acusticos autdbnomos fixos, identificando as regifes ao
redor do mundo onde cetaceos estdo sendo acusticamente monitorados com 0 uso destes
gravadores; quais espécies tém sido alvo desses estudos; e quais informacdes ecoldgicas tém
sido obtidas a partir de dados exclusivamente acusticos.

Capitulo I11: Avaliar o potencial de diferentes métricas acusticas como preditoras da
densidade relativa de baleias-jubarte em uma area reprodutiva no nordeste do Brasil, a partir da
correlagdo com dados do monitoramento visual; investigar se o canto dos machos pode ser
utilizado como proxy para estimativas de densidade populacional; verificar se as métricas
acusticas derivadas do canto diferem em sua capacidade explicativa; e analisar se ha variacao

na capacidade explicativa das métricas entre os periodos diurno e crepuscular/noturno.

1.6. HIPOTESES

Capitulo I: O MAP possui potencial para ampla aplicacdo geografica, acompanhando a
extensa distribuicdo dos cetaceos. Contudo, supBe-se que 0s registros se concentrem em areas
de uso estratégico, como areas de reproducéo e alimentacéo, onde ocorrem maiores agregacaes.
Também se hipotetiza que as espécies mais representadas sejam aquelas com repertérios vocais
ja descritos e bem conhecidos, condi¢do que favorece a identificagdo acuUstica, dado que a
metodologia se baseia exclusivamente em registros sonoros. Por fim, espera-se que as
informagdes ecoldgicas mais recorrentes estejam relacionadas a ocorréncia e ao uso do habitat,
pois tais inferéncias dependem apenas da identificacdo confidvel da espécie, 0 que estd
associado ao conhecimento prévio de suas vocalizagoes.

Capitulo 1I: Hipotetiza-se que todas as métricas acusticas apresentem correlacdo
consistente com a densidade relativa de baleias registrada visualmente, embora a magnitude

dessa correlagdo varie conforme a sensibilidade de cada métrica as caracteristicas do sinal
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acustico. Em particular, espera-se que o0s niveis de pressdo sonora (SPL) apresentem a
associagdo mais robusta com a densidade relativa de baleias, devido & predominéncia do coro
de machos como principal fonte sonora em areas reprodutivas e a escala continua da métrica,
que potencializa sua sensibilidade a variacdes na densidade de individuos. Adicionalmente,
prevé-se que a andlise por bandas de frequéncia (TOL) permita identificar intervalos especificos
da faixa selecionada mais diretamente associados a atividade vocal da espécie. Por fim, sugere-
se que o desempenho das métricas seja superior durante o periodo noturno, quando a atividade
vocal é mais intensa, de modo que as métricas acusticas reflitam com maior precisdo a

abundéancia de baleias observadas durante o dia.
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Abstract

Passive acoustic monitoring (PAM) is an effective approach for studying cetaceans, especially
in areas where visual methods are limited. This study compiles information on the use PAM
based exclusively on fixed autonomous recorders, in the absence of complementary visual data,
identifying the species targeted, the regions where this technology has been applied, and the
types of biological information that can be solely derived from this method. A total of 138
studies published between 2007 and 2024 were analyzed. The majority were conducted in the
Northern Hemisphere, but those in the Southern Hemisphere showed significant growth starting
in 2014, contributing to the global increase in PAM-based research. The main hotspots included
the Hawaiian Islands, coastal regions of the USA, Australia, and New Zealand. The suborder
Mysticeti was the most studied (51.4%), with a focus on Balaenoptera physalus. Information
on habitat use and temporal variation was most commonly reported for both mysticetes and
Odontocetes, whereas population parameters were the least addressed. We observed that
species representation was influenced by factors such as their global distribution, vocal
characteristics, and the geographic distribution of acoustic research efforts. Despite advances
in bioacoustics, regional gaps were observed, likely influenced by disparities in national GDP
and investment in scientific research. In terms of biological data, passive acoustic monitoring
proved to be an effective method, capable of generating valuable information for several

species.

Keywords: fixed autonomous acoustic recorders, cetaceans, Mysticeti; Odontoceti, global

distribution.
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Introduction

Passive Acoustic Monitoring (PAM) consists of the non-invasive recording of
environmental or wildlife sounds (Browning et al., 2017). The recorders can be automated and
programmed to operate for predetermined periods, eliminating the need for constant researcher
presence and thus avoiding interference with the natural behavior of organisms or adding
acoustic energy to the environment (Browning et al., 2017; Sousa-Lima et al., 2013). In this
method, different deployment strategies are possible, ranging from fixed recorders with single
or multiple hydrophones, to towed or drifting systems, or even devices attached to individual
animals (Van Parijs et al., 2009). Each of these approaches can influence the spatial scale and
coverage of acoustically active marine animals (Van Parijs et al., 2009). To ensure the
effectiveness of this method, the recorder used must be suited to the study environment and
configured with a sampling rate that encompasses the frequencies of interest (Browning et al.,

2017).

The physical properties of the environment influence sound propagation and,
consequently, acoustic monitoring (Hawkins & Myrberg, 1983; Richardson et al., 1995). The
higher density of water compared to air allows sound to travel greater distances in the aquatic
environment, making it particularly advantageous for the application of this type of monitoring
(Hawkins & Myrberg, 1983; Richardson et al., 1995). Additionally, the choice of the target
species is crucial, as species with well known vocalizations are easier to identify, facilitate

identification during acoustic analyses (e.g., Andreas et al., 2022; Cholewiak et al., 2013).

PAM has been widely used in aquatic environments to characterize different
components of the soundscape, including biophony, geophony, and anthropophony, which
correspond, respectively, to sounds of biological, hydro-geo-meteorological, and anthropogenic
origins (Krause, 2008; Pijanowski et al., 2011). In the context of biophony, cetaceans are

acoustic specialists known for producing frequent and varied sounds (Zimmer, 2011). For this
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reason, they are commonly detected in studies characterizing the marine soundscape (e.g.,
Bittencourt et al., 2016; Halliday et al., 2020; Haver et al., 2020). In some cases, their
vocalizations dominate the biological component of the acoustic soundscape (e.g., Bittencourt

etal., 2016).

Cetaceans are aquatic mammals currently classified within the order Cetartiodactyla,
although their exact taxonomic rank (e.g., suborder or infraorder) remains under debate
(Fordyce & Perrin, 2025). Traditionally, cetaceans have been divided into two main groups:
Odontocetes, which include toothed whales, porpoises, and dolphins; and mysticetes, which
encompass baleen whales. Both groups use sound production for communication, foraging, and
navigation, but they differ in the way they produce sounds and in the acoustic characteristics of
their vocalizations (Richardson et al., 2013; Zimmer, 2011). Odontocetes emit sounds across a
broad frequency range, mostly from 5 kHz to over 135 kHz, whereas mysticetes produce
vocalizations concentrated at lower frequencies, between 14 Hz and approximately 5 kHz (Au,

2000).

The vocal diversity of cetaceans is not limited to physical differences in sound signals
between the groups, but also includes intra and interspecific, temporal, and geographic
variations (Bittle & Duncan, 2013; McGaughey et al., 2010; Usman et al., 2020). Additionally,
there are different levels of complexity in vocalizations, ranging from simple emissions, such
as call, those documented in fin whales (Balaenoptera physalus) (e.g., Clark, 1990) and beluga
whales (Delphinapterus leucas) (e.g., Sjare & Smith, 1986), to highly structured and
stereotyped vocal sequences, such as the song of the humpback whale (Megaptera
novaeangliae) (e.g., Payne & McVay, 1971) and the pulsed calls that make up the dialectal
repertoires of killer whales (Orcinus orca) (e.g., Miller, 2002). These acoustic signals provide

important clues for identifying species, populations, groups, and even individuals (e.g.,
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Caldwell & Caldwell, 1971; Guidi et al., 2021; Kremers et al., 2012; Lin & Chou, 2013; Yurk

etal., 2002).

With automation and continuous data storage, PAM has emerged a valuable tool for
large-scale spatiotemporal studies, while also offering relatively low costs (e.g., Mellinger et
al., 2007; Pijanowski et al., 2011; Sousa-Lima et al., 2013). Compared to visual monitoring,
PAM is less affected by adverse weather conditions that reduce visibility, such as rain, fog, and
darkness (e.g., Dalpaz et al., 2021; Mellinger et al., 2007; Zimmer, 2011). This advantage
allows data collection at night and the detection of animals whenever they are acoustically
active, whereas visual monitoring is restricted to the moments when individuals surface (e.g.,
Dalpaz et al., 2021; Mellinger et al., 2007; Zimmer, 2011). Given these limitations, many
studies have increasingly adopted acoustic approaches to study cetaceans (e.g., Aulich et al.,
2019; Guidi et al., 2021; Van Parijs et al., 2009). As a result of this growing demand, recording
equipment and analytical methods have been continuously improving, leading to an increase in
both the quantity and quality of generated data (Kowarski & Moors-Murphy, 2021). However,
it is important to note that acoustic methods also have limitations. Among these, detection
efficiency depends on the signal-to-noise ratio, which can be influenced by equipment
characteristics, hydrophone motion, and environmental factors such as wind, rain, and sea state
(Verfuss et al., 2018). Moreover, the wide variability in vocalization types and vocal behaviors
across species requires that acoustic approaches be carefully tailored to the target species or

group (Dalpaz et al., 2021).

In this context, studies that have combined visual and acoustic monitoring reported
substantial improvements in individual detection rates, highlighting the complementarity
between these methods and recommending their joint application whenever possible (e.g.,
Dalpaz et al., 2021; Mellinger et al., 2007; Oswald et al., 2003). However, many areas used by

cetaceans are remote and difficult to access, especially during certain times of the year, such as
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in polar regions (e.g., Moore et al., 2012). In such cases, PAM represents a viable solution to
reduce seasonal and regional biases in obtaining cetacean data, particularly when visual surveys
are challenging. The literature demonstrates that PAM has been widely used for a variety of
purposes, including species identification (e.g., Baumgartner et al., 2008), characterization of
acoustic parameters and vocalization patterns (e.g., Helble et al., 2020), assessment of
occurrence and habitat use (e.g., Ahonen et al., 2021; Stanistreet et al., 2018), and investigation
of the impacts of anthropogenic noise on animal behavior (e.g., Sousa-Lima & Clark, 2008,

2009).

To better understand which types of biological information can be obtained exclusively
from acoustic data, the present study focuses on the use of fixed autonomous acoustic recorders,
given that visual observations are generally not directly linked to the recorded sounds
(Mellinger et al., 2007). This feature facilitates evaluating information that can be inferred
solely from acoustic recordings. Specifically, we aim to determine which cetacean species have
been surveyed using PAM, in which regions of the world, and what types of biological
information can be extracted exclusively through this method, without relying on

complementary visual approaches—whether fixed, vessel-based, or aerial.

Methods

Search Strategy

We conducted a literature search up to July 3, 2024, including peer-reviewed articles
that applied PAM in cetacean research, with no restrictions on the initial publication data. The
search encompassed all available articles, from the earliest record identified to the most recent
publication on the specified date. We used the Scopus and Web of Science databases, applying

the following search strategy for titles or keywords: Passive AND acoustic AND (monito* OR
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record* OR sampl* OR automat* OR sound) AND (cetacean* OR whale* OR dolphin* OR
odontocet* OR mysticet*). The initial search presented 520 studies. After removing duplicates,

344 studies were screened based on predefined criteria.

Inclusion Criteria

We included studies that met the following criteria: (i) Data were collected through
PAM using fixed autonomous acoustic recorders; (ii) the study provided information at any
taxonomic or ecological level within cetaceans; (iii) it included at least minimal information for
georeferencing the acoustically monitored area; (iv) the response variable was directly related

to the target group.

Exclusion Criteria

Of the 344 articles identified in our search, 206 were excluded based on the following
criteria: (i) studies that used visual monitoring, whether from a land-based observation station,
vessel (including autonomous towed systems), or aircraft; (ii) studies that used acoustic data
obtained from databases without clear information about the origin or method of sound
collection; (iii) studies in which the response variable was related to the recording equipment
or analysis method rather than the target group, such as calibration or evaluation of recorder
sensitivity; (iv) experimental studies involving playback or simulations of cetacean sounds; (V)
review articles, that may have included data based on collection methods that did not meet the
inclusion criteria; (vi) studies that addressed marine mammals as a whole, without a specific
focus on cetaceans.

Analyzed Factors

A total of 138 studies was analyzed. The chronological sequence of publications was
subdivided between the Northern and Southern Hemispheres to assess how article production

varied across regions over time. Extracted information included the taxonomic classification of
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the cetacean group evaluated, either Mysticeti or Odontoceti, down to species level
identification when available; georeferencing information of the acoustic recorders, and

biological information related to the most detailed taxonomic level investigated.

Georeferenced recorder locations were used to generate a kernel density map in QGIS
3.28.11 (QGIS Development Team, 2023) providing an overview of global regions where
cetaceans are monitored using fixed autonomous recording units. The map was created in the
WGS 84 reference system, using a 500 km radius. There is an inherent bias in the map’s
accuracy due to the variability and completeness of the geographic information provided in the
reviewed studies. Some studies included precise geographic coordinates for each recorder,
allowing accurate localization. Others, however, only indicated the location of the hydrophone
array, represented by a single point. Additionally, some studies did not provide detailed
coordinates, only study area maps indicating where recorders were deployed. Based on these
visual references, we estimated the recorder’s location using Google Earth, resulting in an
approximate rather than exact location. Despite this accuracy bias, the map provides a general
overview of monitored areas, offering broad insight into the regions where fixed autonomous

acoustic recorders are being applied for cetacean studies.

We assessed the occurrence of Mysticete and Odontocete species separately through
frequency charts, considering species-level identification. Percentages were calculated based
on the total number of studies (n = 138), without separating the data by group. This allowed us
to identify the most frequently studied species overall. Additionally, we examined which oceans
were most frequently studied to determine whether the predominance of certain species resulted
from sampling bias due to a higher concentration of research in specific regions or reflected a

global trend.

Biological information on cetaceans was categorized into nine categories: Acoustic

parameter: Included studies that analyzed the acoustic content of vocalizations, such as
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describing and characterizing parameters or acoustic repertoires; Anthropogenic impact:
Included studies that used acoustic recordings to assess the effects of anthropogenic activities
on cetacean behavior and habitat use; Behavior: Included studies that used acoustic recordings
to assess cetacean behavior, such as diving, swimming, foraging, migration, and other activities.
Behavioral responses to anthropogenic activities were also included in this category;
Classification: Included studies that achieved species-level identification through the acoustic
content of vocalizations, regardless of the method used; Diel occurrence: Included studies that
evaluated diel vocal patterns in cetaceans (e.g., over a 24-hour period or between light and dark
phases); Habitat use: Included studies that obtained information on how cetacean species used
the study area, involving data on detection, presence, occurrence, distribution, and movement,
as well as their association with the area's physical and ecological characteristics; Population
parameter: Included studies that used acoustic emissions produced by cetaceans to estimate or
infer population abundance and/or density; Spatial variation: Included studies that compared
two or more areas concerning any ecological and behavioral aspects of the animals, as well as
differences in their acoustic repertoire; Temporal variation: Included studies that used acoustic
recordings to assess seasonal and/or interannual patterns in cetacean acoustic emissions (e.g.,

occurrence, detection, vocal activity).

To evaluate how frequently each biological information category appeared in studies on
mysticetes and odontocetes, we calculated percentages separately for each group. In cases
where a study included both groups, it was counted once in each corresponding total (i.e., added

to both Mysticete and Odontocete totals).

It is important to note that a single study could be assigned to more than one category,
as the types of biological information extracted are often interrelated. For instance, studies
assessing habitat use frequently also addressed temporal variation. To explore potential co-

occurrence patterns among categories, we applied a correlation matrix based on binary variables
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(presence = 1; absence = 0), which allowed us to identify how often these categories appeared

together in the same study.

Results

The 138 studies identified as eligible for this review span the period from 2007 to 2024.
Until 2011, the number of publications ranged from 0 to 5 per year, totaling eight studies
(Figure 1). Despite fluctuations over the years, an increase in publication output was observed
starting in 2012 in the Northern Hemisphere and 2014 in the Southern Hemisphere (Figure 1).
In both hemispheres, the number of publications rose from 2019, peaking in 2021, followed by
a downward trend (Figure 1). Notably, 84.4% of the articles were published in the last 10 years,

with 54% of this total published from 2019 onward.
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FIGURE 1. Number of eligible studies published per year that assessed cetaceans’ issues using exclusively fixed
autonomous acoustic recorders in the Northern Hemisphere (blue line) and Southern Hemisphere (green line).
Note: Kowarski et al. (2023) was first published online in 2022 and officially assigned to a journal volume and
issue in 2023. Therefore, the citation and reference use the year 2023. However, for the purpose of counting the

number of annual publications, the year 2022 was considered, corresponding to the online publication date.



40

Global distribution and density of fixed autonomous acoustic recorders

The geographical areas monitored by fixed autonomous acoustic recorders were broad
and diverse, covering all the world's oceans as well as inland seas, bays, gulfs, rivers, and lakes
(Figure 2). The main hotspots for recorder deployment were identified in the Hawaiian Islands
and along the coastal regions of the United States (Figure 2). Among the 14 studies conducted
in Hawaii, eight were concentrated on the island of Kauai (see Table S1). In the United States,
the coastal regions extend from the Southwest, in the Gulf of Mexico, to the Northeast, in the
Gulf of Maine (Figure 2). Some of the most concentrated locations include Florida, Georgia,
Virginia, New York Bight, and within the Gulf of Maine, Massachusetts Bay (Figure 2). On the
West Coast, the key hotspots were found in the Northwest, in the state of Washington, and

along the eastern shore of the Baja California Peninsula in the Gulf of California (Figure 2).
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FIGURE 2. Kernel density map showing areas of concentration of fixed autonomous acoustic recorders deployed

for cetacean acoustic monitoring. The map scale is 1:140,000,000.

Fixed autonomous acoustic recorders were widely used to monitor island regions, such
as New Zealand and Australia (Figure 2). These devices were used both on islands near the
mainland — such as Hainan and Lantau, in the southern and southeastern coasts of China — and
on more remote oceanic islands, like the Line Islands in the Pacific and South Georgia in the
Atlantic (Figure 2). In addition to island areas, inland seas, bays, gulfs, rivers, and lakes were
also surveyed, with studies conducted in the Mediterranean Sea, Massachusetts Bay, Gulf of
Mexico, Pearl River, and Laguna San Ignacio (see table S1). Notably, this method was applied
in polar regions, such as the Arctic and Southern Oceans, demonstrating its feasibility even in

extreme climatic conditions (Figure 2).

Regarding ocean representativeness, the highest concentration of studies was found in
the Northern Hemisphere, particularly in the Atlantic Ocean (n = 21 for mysticetes; n = 26 for
odontocetes) and the Pacific Ocean (n = 18 for mysticetes; n = 28 for odontocetes) (Figure 3).
In the Arctic Ocean, 6 studies with mysticetes and 3 with odontocetes were identified (Figure
3). In the Southern Hemisphere, the Pacific Ocean was the most representative for mysticetes
(n = 14), while the Atlantic Ocean had the highest number of studies with odontocetes (n = 7)
(Figure 3). No studies on odontocetes were identified in the North Indian Ocean, South Indian

Ocean, or Southern Ocean (Figure 3).
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FIGURE 3. Number of studies published until July 2024, conducted using exclusively fixed autonomous acoustic recorders in each ocean considering the Mysticeti (blue bars)

and Odontoceti (green bars) groups.



44

Representativeness of cetacean species in the studies

Mysticetes was the most studied, representing 51.4% (n = 71) of the total, while the
odontocetes accounted for 45.7% (n = 63). Additionally, 2.9% (n = 4) of the studies analyzed
both groups. Among the 15 Mysticete species currently recognized by the Taxonomy
Committee (2024), only the pygmy right whale (Caperea marginata) was not recorded, as well
as 5 subspecies (Table 1). Regarding odontocetes, of the 79 recognized species, 26 were

recorded, along with 2 subspecies (Table 2).

TABLE 1. Mysticete species and subspecies monitored exclusively using fixed autonomous acoustic recorders

worldwide.
MYSTICETI
Scientific name Common name
Balaena mysticetus Bowhead whale
Balaenoptera acutorostrata Minke whale
Balaenoptera bonaerensis Antarctic minke whale
Balaenoptera borealis Sei whale
Balaenoptera brydei Brydes whale
Balaenoptera musculus Blue whale
Balaenoptera musculus brevicauda* Pygmy blue whale
Balaenoptera musculus chilensis* Chilean blue whale
Balaenoptera musculus intermedia* Antarctic blue whale
Balaenoptera musculus musculus* Northeast pacific blue whale
Balaenoptera omurai Omura’s whale
Balaenoptera physalus Fin whale

Balaenoptera physalus quoyi* Southern fin whale
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Balaenoptera ricei Rice’s whale
Eschrichtius robustus Grey whale
Eubalaena australis Southern right whale
Eubalaena glacialis North Atlantic right whale
Eubalaena japonica North Pacific right whale
Megaptera novaeangliae Humpback whale

*=subspecies

TABLE 2. Odontocete species and subspecies monitored exclusively using fixed autonomous acoustic recorders

worldwide.
ODONTOCETI
Scientific name Common name
Berardius bairdii Baird’s beaked whale
Cephalorhynchus hectori hectori* Hector's dolphins
Cephalorhynchus hectori maui* Maui dolphin
Delphinapterus leucas Beluga whale
Delphinus delphis Common dolphin
Globicephala macrorhynchus Short-finned pilot whale
Globicephala melas Long-finned pilot whale
Grampus griseus Risso’s dolphin
Hyperoodon ampullatus Northern bottlenose whale
Kogia breviceps Pygmy sperm whale
Kogia sima Dwarf sperm whale
Lagenorhynchus obliquidens Pacific white-sided dolphin

Mesoplodon densirostris Blainville's beaked whale
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Mesoplodon europaeus Gervais's beaked whale
Mesoplodon stejnegeri Stejneger beaked whale
Neophocaena asiaeorientalis Yangtze finless porpoise
Orcinus orca Killer Whale
Phocoena phocoena Harbour porpoise
Phocoena sinus Vaquita porpoise
Physeter macrocephalus Sperm whale
Pontoporia blainvillei Franciscana dolphin
Pseudorca crassidens False killer whale
Sousa chinensis Indo-Pacific humpback dolphin
Stenella attenuata Pantropical spotted dolphin
Stenella longirostris Spinner dolphin
Steno bredanensis Rough-toothed dolphin
Tursiops truncatus Bottlenose dolphin
Ziphius cavirostris Cuvier’s beaked whale

*=subspecies

Some species stood out in terms of the number of studies in which they were assessed.
Among mysticetes, the fin whale was the most studied, appearing in 17.4% (n = 24) of the
analyzed studies (Figure 4). Next, the humpback whale stood out, appearing in 10.9% (n = 15)

of the studies, and the blue whale in 9.4% (n = 13) of the studies (Figure 4).

Among odontocetes, the most studied species was the sperm whale, mentioned in 13%
(n = 18) of the studies (Figure 5). In second place was the killer whale, with 6.5% (n = 9),

followed by Cuvier’s beaked whale, with 5.1% (n = 7) (Figure 5).
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FIGURE 4. Frequency of occurrence of Mysticeti species in studies using exclusively fixed autonomous acoustic

recorders.



Physeter mocrocephalus
Oranus orca

Ziphius cavirostris

Tursiops truncatus

Phocoena phocoeno
Delphinapterus leucas

Sousa chinensis

Mesoplodon densirostris
Grampus griseus
Globicephola mocrorhynchus
Psewdorca craossidens
Pontoporia blatnvillel
Logenorhynchus obliquidens
Kogio simo

Kogia breviceps
Cephalorhynchus hectorl maul

Odontoceti species

Steno bredanensis

Stenella longirostris

Stenelln ottenuats

Phocoena sinus
Neaphocaeno asigeorientalis
Mesoplodon stejneger]
Mesoplodon europaeus
Hyperoodon ampullotus
Globicephalo melos
Deiphinus delphis
Cephalorhynchus hectori hectorl
Berardius bairdii

B
8 10
Number of studies

12

14

16

18

20

48

FIGURE 5. Frequency of occurrence of Odontoceti species in studies using exclusively fixed autonomous

acoustic recorders.

Biological information

In evaluating the biological information, we observed that 93.5% of the studies

classified cetaceans at the species level. Due to its high representativeness, we chose to remove

this category from the occurrence frequency analysis. Among the eight categories analyzed,

habitat use was the most representative in both groups, appearing in 80.3% of studies with

mysticetes (n = 61) and 79.1% with odontocetes (n = 53) (Figure 6). Next, temporal variation

stood out as the second most frequent category, present in 77.6% of studies with mysticetes (n

= 59) and 70.1% of studies with odontocetes (n = 47) (Figure 6). The third position varied

between the groups: for mysticetes, spatial variation was observed in 51.3% of the studies (n =
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39), while for odontocetes, diel occurrence was recorded in 59.7% of the studies (n = 40)
(Figure 6). Population parameter was the least representative category, present in only 5.3% of

studies with mysticetes (n = 4) and 9.0% with odontocetes (n = 6) (Figure 6).

It is worth noting that most of the studies categorized under habitat use focused on the
detection and occurrence of individuals within the study area, often incorporating a temporal
perspective. Consequently, habitat use and temporal variation frequently co-occurred across
studies. The results of the correlation matrix reveal a moderate positive correlation (r = 0.34)
between habitat use and temporal variation, indicating that these aspects are commonly

considered together (see figure S2).
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FIGURE 6. Number of studies using exclusively fixed autonomous acoustic recorders that included each category of biological information for the Mysticeti (blue bars) and

Odontoceti (green bars) groups.
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Discussion

The publications included in this review highlight the potential of PAM using
fixed autonomous acoustic recorders to enhance our understanding of cetaceans,
beginning with the earliest identified studies. Between 2007 and 2011 — a period marked
by a low number of annual publications — the studies conducted provided valuable
contributions for species conservation, including the characterization of acoustic content
and vocal repertoire (e.g., Sirovié et al., 2007; Stimpert et al., 2011), as well as the
description of temporal patterns of acoustic activity (e.g., Soldevilla et al., 2010). This
information is particularly relevant for understanding the potential impacts of
anthropogenic activities on cetacean behavior, as it serves as a reference point for
assessing changes in known patterns, and consequently expected patterns (e.g., La Manna
et al., 2014; Munger et al., 2016). Furthermore, the analysis of these patterns supports the
identification of seasonal trends in occurrence and habitat use, which is particularly
important in hard-to-reach areas subject to seasonal biases due to winter climate
conditions. In such contexts, conventional visual surveys from vessels may be unfeasible,
rendering acoustic monitoring an essential tool (e.g., Moore et al., 2012; Williams et al.,

2014).

The Northern Hemisphere exhibited a higher number of studies compared to the
Southern Hemisphere. However, a substantial increase in the number of publications
since the past decade occurred in both hemispheres, possibly driven by technological
advancements and the development of passive acoustic equipment, although this upward
trend is also common in scientific publications in general (Bornmann & Mutz, 2015). In
2012, more than 40 fixed autonomous acoustic recording devices were reviewed by
Sousa-Lima et al. (2013), who highlighted advances in the temporal operating capacity

and frequency range coverage of these devices. Among the main factors cited were
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increased data storage capacity, longer battery life, and improvements in sampling rate.
In addition to technological advancements, the study also emphasized the strengthening
of cooperation between institutions in the collection of bioacoustics data for the study of
marine mammals. Some examples are Cornell University and Peter Worcester’s group at
the Scripps Institution of Oceanography (SIO), located on the east and west coasts of the
United States, respectively, coinciding with regions where we identified recorder

deployments hotspots.

The decrease in the number of publications from 2021 onward may reflect natural
fluctuations in scientific output or shifts in research and publication priorities influenced
by external factors. During the COVID-19 pandemic, for instance, a surge in publications
related to SARS-CoV-2 was accompanied by a temporary reallocation of scientific
resources in various fields. Although this effect has been more clearly documented in
medical research (Aviv-Reuven & Rosenfeld, 2021), its broader impact across

disciplines, including ecology and bioacoustics, remains unclear.

Global distribution and density of fixed autonomous acoustic recorders used

for cetacean monitoring

Recording hotspots were most clearly identified in North America and Oceania,
but were also observed in Asia and Europe. This pattern reflects a well-documented trend
in global scientific output, which is closely associated with countries’s level of
socioeconomic development. More developed nations tend to invest more in scientific
research and, consequently, produce a greater number of articles (e.g., Di Marco et al.,
2017; Galvez et al., 2000). Another relevant factor is the representation of ecologically
strategic areas for cetaceans, including feeding areas (e.g., Durette-Morin et al., 2022;

Howe & Lammers, 2021), breeding grounds (e.g., Buchan et al., 2019; Thomisch et al.,
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2019), and migratory corridors (e.g., Pearson et al., 2023; Warren et al., 2020), as well as
marine protected areas such as the Stellwagen Bank National Marine Sanctuary in the

Gulf of Maine (e.g., Stanistreet et al., 2013; Stimpert et al., 2011).

The Chukchi Sea and the Weddell Sea — located in the Arctic and Southern
Oceans, respectively — are examples of important feeding areas for Mysticeti identified
in this review (e.g., Filun et al.,, 2020; Garland et al., 2015). These regions are
characterized by their high primary productivity and dense concentrations of euphausiids
(krill) (Atkinson et al., 2008; 2009; Hill et al., 2006), a key food resource supporting
numerous species, including baleen whales, as well as other marine mammals and fish
(Hill et al., 2006). Additional regions sharing these ecological characteristics include the
Bering Sea and South Georgia. The Bering Sea presents favorable conditions for PAM
due its relatively flat seafloor and shallow depths (<200 m) (Munger et al., 2011; Wiggins
et al., 2004). South Georgia, on the other hand, is considered a critical feeding area for
one of the seven recognized humpback whale populations in the Southern Hemisphere

(IWC, 1998; Zerbini et al., 2006).

In addition to humpback whales, other baleen whales are also known to undertake
annual migrations between feeding and breeding grounds (Stone et al., 1990; Jonsgard,
1966). Hotspots identified at low latitudes along the western and eastern coasts of North
and South America, as well as Africa and Australia, appear to effectively represent these
reproductive nurseries (e.g., Aulich et al., 2019; Burnham et al., 2018; Dombroski et al.,
2016; Dréo et al., 2019; Salisbury et al., 2016; Thomisch et al., 2019). Understanding
habitat use and behavior across different life stages is fundamental for species
conservation, as it enables the identification of potential threats and the development of
effective mitigation strategies. The more we understand these processes, the more

informed and targeted conservation measures can be. Owing to its ability to cover vast
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areas and detect the presence of multiple cetacean species, PAM plays a crucial role in

advancing knowledge about these organisms and their habitat use patterns.

Cetacean Species Representation in Studies

Most of the publications identified in this review assessed odontocetes and
mysticetes separately. The low representation of studies addressing both groups
simultaneously may be related to their distinct vocal characteristics, which consequently
require different acoustic methodologies. Odontocetes produce mid- to high-frequency
sounds, which propagate less effectively in the aquatic environment compared to the low-
frequency sounds emitted by mysticetes (Richardson et al., 1995). As a result, although
the same recorder may be capable of detecting both groups, data collection and analysis
approaches often vary depending on the frequency range of interest. For example,
Heenehan et al. (2019) and Kowarski et al. (2023) employed different sampling rates
during data acquisition, while Bittencourt et al. (2018) and Rice et al. (2021)
differentiated signals during the acoustic analysis phase. In both methodologies, the
frequency ranges used by odontocetes and mysticetes were covered. Within each group,
species representation in passive acoustic studies were influenced not only by biological
factors — such as global distribution and vocal characteristics — but also by the

geographical distribution of acoustic research efforts.

The sperm whale was the most studied Odontocete species and is also one of the
most widely distributed cetaceans in the world’s oceans (Whitehead, 2002). In the studies
analyzed in this review, the species was recorded in both the Atlantic and Pacific Oceans
(e.g., Ackleh et al., 2012; Baumann-Pickering et al., 2016; Diogou et al., 2019a, 2019b;
Shabangu & Andrew, 2020). However, the majority of the research identifying this
species was conducted in the Northern Hemisphere, particularly in the North Atlantic.

The sperm whale is currently classified as Vulnerable on the IUCN Red List (Taylor et
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al., 2019), and demographic assessment indicated slow population growth (Chiquet et al.,
2013). However, population estimates are typically obtained through visual surveys,
which has limitations in low-density areas (e.g., Kaschner et al., 2012). Conversely,
sperm whale vocalizations are well documented, facilitating their detection in acoustic
surveys (e.g., Backus & Schevill, 1966; Madsen et al., 2002; Weilgart & Whitehead,
1988). Consequently, studies have increasingly investigated acoustic techniques to
improve population estimates for this species (e.g., Ackleh et al., 2012; Westell et al.,

2022).

Besides the sperm whale, two other frequently studied odontocetes were the Killer
whale and Cuvier’s beaked whale — both widely distributed globally (Allen et al., 2012;
Ford, 2009). Their vocalizations are also well characterized and extensively documented
(e.g., Baumann-Pickering et al., 2013; Ford, 1989; Holt et al., 2013), which supports the
use of acoustic monitoring in ecological and behavioral studies (e.g., Giorli et al., 2016;

Myers et al., 2021; Riera et al., 2019; Pierpoint et al., 2021).

Among mysticetes, the three most frequently studied species in the analyzed
publications are all considered cosmopolitan (Clapham & Mead, 1999; Edwards et al.,
2015; Sears & Perrin, 2009), suggesting that their broad distribution directly influences
their representation in acoustic studies. In contrast, species with more restricted ranges
tend to be underrepresented — for example, the bowhead whale, which is found
exclusively in the Arctic Ocean (Moore & Reeves, 1993). However, the predominance of
research conducted in the Northern Hemisphere, particularly in the Atlantic and Pacific
Oceans, raises questions about potential biases in this interpretation. The frequency of
species occurrence may have been influenced not only by their global distribution but

also by the higher concentration of acoustic recorders deployed in specific regions.
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The data synthesis conducted by Edwards et al. (2015) revealed that, when
considering only acoustic surveys, the fin whale exhibited a higher occurrence density in
the Northern Hemisphere. However, when these data were combined with visual survey
information, the estimated distribution became more balanced between the Northern and
Southern Hemispheres, despite the identification of an "equatorial gap" (between
approximately 20°N and 20°S) in the species’ global distribution (Edwards et al., 2015).
This discrepancy suggests that the greater availability of acoustic data from the Northern
Hemisphere may influence the perception of the species’ distribution. Although this
review did not directly assess the global distribution of the analyzed species, the findings
highlight the need of expanding acoustic monitoring efforts to other geographic regions,
particularly in the Southern Hemisphere. Despite the gradual growth of these studies —
evidenced by annual fluctuations in the number of publications — the dominance of
research in the Northern Hemisphere may still bias the global understanding of fin whale

distribution and other species.

From an acoustic perspective, the vocal characteristics of the most studied species
may have contributed to their broad representation in acoustic research. For example, blue
and fin whales produce some of the most intense vocalizations among mysticetes, which
propagate exceptionally well in the aquatic environment, thereby facilitating their
detection in acoustic surveys (Sirovi¢ et al., 2007). In the case of the humpback whale,
its frequent representation in studies may be associated with the complexity of one of its
most well-known vocal behaviors—song (Payne & McVay, 1971). The extensive
knowledge of this vocalization has facilitated its use across a range of research
approaches, including studies of seasonal variations (e.g., Munger et al., 2012),
movement patterns (e.g., Stanistreet et al., 2013) and even abundance estimation (e.g.,

Kugler et al., 2020). The latter remains one of the least common categories of biological
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information in the reviewed studies, as it requires a deep understanding of the species’

vocal patterns to ensure robust and reliable estimates.

Biological Information

Most of the biological information identified in the analyzed studies was related
to habitat use and seasonality, particularly the characterization of seasonal occupancy
patterns in monitored areas. As a result, these categories were widely represented in the
reviewed literature (e.g., Castellote et al., 2020; Dréo et al., 2019; Giorli & Au, 2017;
Murray et al., 2014; Stanistreet et al., 2018). This pattern was observed for both
mysticetes and odontocetes, and can be attributed to the advantages of passive acoustic
monitoring in reducing regional and seasonal biases associated with visual methods
(Mellinger et al., 2007). While direct observations are limited to moments when
individuals surface and depend on weather conditions favorable for visibility, acoustics
methods enable continuous monitoring regardless of these constraints (Mellinger et al.,

2007).

Most of the analyzed studies performed species-level identification, made possible
by fundamentals that characterized species-specific vocalizations. These advances have
enabled the widespread use of sound as a tool for detecting and monitoring a variety of
species (e.g., Aulich et al., 2022; Barlow et al., 2023; Pilkington et al., 2023; Valdés

Hernandez et al., 2024).

We observed that, beyond documenting species presence over time, bioacoustics
has supported more in-depth analyses. These include assessments of movement patterns
in breeding and feeding areas and along migratory routes, which require broader
geographic coverage (e.g., Aulich et al., 2019, 2022; Bittencourt et al., 2018; Davis et al.,

2017; Qestreich et al., 2020; Stanistreet et al., 2013), as well as behavioral studies such
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as foraging (e.g., Giorli et al., 2016, 2017) and diving patterns (e.g., Hildebrand et al.,
2015). Another relevant application involves assessing responses to anthropogenic
activities, ranging from vessel interactions (e.g., La Manna et al., 2014) to the impacts of

naval exercises involving underwater explosives (e.g., Lammers et al., 2017).

Studies on acoustic parameters and spatial variation were particularly notable
among mysticetes. Many of these focused on characterizing species' acoustic repertoires
(e.g., Dombroski et al., 2016; Magnusdattir et al., 2015; Stimpert et al., 2011), and this
high representation likely contributed to the large number of studies aimed at comparing
vocalizations across different geographic regions — another prominent category within
this group (e.g., Helble et al., 2020; Furumaki et al., 2021; Morano et al., 2012). In
contrast, the population parameters category was underrepresented for both mysticetes
and odontocetes. Nonetheless, this field appears to be growing, using different methods
depending on the level of knowledge available about the behavior and vocalizations of
the species studied (e.g., Hildebrand et al., 2015, 2019; Martin et al., 2013; Kigler et al.,

2020).

It is worth noting that biological information, although less represented, was also
recorded in historically under-sampled regions, where factors such as adverse climatic
conditions (e.g., Lammers et al., 2013), limited accessibility (e.g., Munger et al., 2011),
and lack of research investment (e.g., Shabangu & Andrew, 2020) hinder data collection
through traditional methods. Tracking individuals using acoustic records can provide
more detailed and continuous information with higher spatial and temporal resolution
than data obtained through visual surveys (Sousa-Lima et al., 2018), making it
particularly valuable for studying cryptic species (e.g., Warren et al., 2021). The reviewed

studies clearly demonstrate the significant potential of PAM to address ecological and
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behavioral questions about cetaceans, helping to overcome limitations imposed by

temporal and regional constraints.

Conclusion

In this review, we present an overview of the biological information obtained
exclusively through PAM using fixed autonomous acoustic recorders applied in the study
of cetaceans. In addition to evaluating mysticetes and odontocetes separately, we
analyzed species representation in acoustic studies, and offered a global perspective on
monitoring efforts, highlighting both well-sampled regions and those that remain
underrepresented. The findings obtained here can guide future research by encouraging
the expansion of bioacoustics application to access new areas and species, as well as

improvements in data collection and analysis strategies.

By mapping the types of biological information accessed through PAM, this
review contributes to a better understanding of how different biological themes have been
addressed across species and regions. Although we do not assess methodological
effectiveness directly, identifying which types of information have been most frequently
explored can help inform future studies, especially in choosing target species or defining
monitoring priorities. Despite the predominance of studies conducted in the Northern
Hemisphere, we observed a growing number of publications reporting research in the
Southern Hemisphere. However, a more in-depth analysis of author affiliations would be
necessary to fully understand the geographic distribution of research leadership and

institutional capacity.

This overall trend reflects not only the technological advancements in acoustic

equipment but also the increasing investments in the field and the collaboration between
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institutions dedicated to bioacoustics. These improvements have enabled the long-term
acoustic monitoring of cetaceans, granting access to previously limited information,
particularly for species with restricted distributions and in remote areas. Despite
geographical gaps remaining, passive acoustic monitoring proves to be an essential tool
in bridging these deficiencies, enhancing ecological, behavioral, and conservation
research while enabling data collection in remote and environmentally challenging

regions.
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Abstract

Male humpback whales produce complex acoustic signals known as songs, which
dominate the underwater soundscape during the breeding season. The vocal activity of
these singers has the potential to serve as an indicator of population abundance patterns.
A coastal reoccupation area of humpback whales in southern Bahia in Brazil was
monitored visually and acoustically during the 2014, 2015, 2018, and 2019 seasons. The
objective of this study was to assess whether acoustic metrics extracted from the song
chorus reflect patterns of species abundance. Sound pressure level (RMS SPL), 1/3 octave
band levels (TOL), acoustic complexity index (ACI), and the number of singers (on a 0
to 4 scale) were measured and visual estimates of relative whale abundance were used as
reference. The ACI presented as the most unstable metric, being more influenced by
interannual variations in song structure than by population density. In contrast, RMS SPL
and the number of singers more consistently reflected seasonal and annual density
patterns. The number of singers presented consistency with visual estimates, although its
limited scale may reduce statistical sensitivity in contexts of high vocal activity. RMS
SPL showed higher sensitivity but may include sounds from other biological sources,
requiring cautious interpretation, especially during low-density periods. We conclude that
the combined use of these metrics represents a promising complementary approach for

passive monitoring of humpback whale populations.

Keywords: acoustic index, breeding ground, Megaptera novaeangliae, passive acoustic

monitoring, song chorusing, sound pressure level.
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Introduction

Estimating population size and monitoring its variation over time are fundamental
for species conservation, as they allow assessing the current status, the effectiveness of
conservation efforts and projecting future trends (e.g., Hare et al., 2011; Mohammed &
Mohd-Sah, 2024; Turco et al., 2025). This information is essential to understand the
factors influencing population viability and, consequently, to more accurately guide the
adoption of management strategies and mitigation measures when necessary (e.g., Fantle-
Lepczyk et al., 2018; Zambrano et al., 2007). Traditionally, population abundance
estimates are obtained through direct counts of individuals in a given sampling area (e.g.,
Gongcalves et al., 2018a; Munari et al., 2011; Thresher & Gunn, 1986). From these data,
statistical and mathematical models can be employed to extrapolate results to larger areas
or to make temporal projections about population dynamics (e.g., Conn et al., 2015;
Zerbini et al., 2019). This type of approach is widely used in terrestrial environments
(e.g., Fantle-Lepczyk et al., 2018; Mohammed & Mohd-Sah, 2024; Munari et al., 2011),
where direct observation is more feasible, but it has also been adapted to aquatic
environments, being an applicable and valuable alternative (e.g., Goncalves et al., 2018a;

Mobley et al., 1999; Thresher & Gunn, 1986).

Monitoring changes in animal populations over time often requires systematic
long-term monitoring programs, which are not always simple to implement in aquatic
environments (e.g., Hayes & Schradin, 2017; Kaschner et al., 2012). Factors such as
variations in light, sea state, rain, and other weather conditions can compromise animal
visibility (Mellinger et al., 2007; Pieretti et al., 2015). Furthermore, visual surveys
generally demand high logistical effort and significant operational costs, especially when
conducted in hard-to-access areas (e.g., Barlow & Taylor, 2005; Sousa-Lima et al., 2013).

In this context, passive acoustic monitoring (PAM) emerges as an effective alternative,
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as it allows continuous and automated detection of acoustic signals regardless of lighting
and weather conditions (Mellinger et al., 2007; Sousa-Lima et al., 2013). The possibility
of prolonged data collection without the need for constant field presence helps reduce
costs, making this approach particularly advantageous in remote regions (e.g., Barlow &

Taylor, 2005; Mellinger et al., 2007; Sousa-Lima et al., 2013).

Cetaceans—mammals exclusively aquatic—have been extensively studied using
PAM, mainly due to their ecological and behavioral characteristics (e.g., Bittencourt et
al., 2018; Johnston et al., 2008; Martin et al., 2013; Todd et al., 2020; Valdés-Hernandez
et al., 2024). These species produce sounds in social, navigational, and foraging contexts,
making them easily detectable through acoustic methods (e.g., Richardson et al., 2013;
Zimmer, 2011). Additionally, they spend long periods submerged, out of visual range,
which reinforces PAM’s applicability (Zimmer, 2011). Based on these advantages, PAM
has been used to investigate factors such as occurrence patterns (e.g., Johnston et al.,
2008; Myers et al., 2021), vocal activity (e.g., Howe & Lammers, 2021; Webster et al.,
2019), responses to anthropogenic disturbances (e.g., Papale et al., 2020; Poupard et al.,
2022), and even population abundance estimates (e.g., Klgler et al., 2021; Martin et al.,
2013). However, for these last estimates to be reliable, it is essential to understand the
vocal behavior of the target species and its relationship with population density (e.g., Au

et al., 2000; Kigler et al., 2021).

In this context, the humpback whale (Megaptera novaeangliae) stands out as a
model species, given its well-documented song repertoire (e.g., Gongalves et al., 2023;
Kugler et al., 2021; Noad et al., 2000; Payne & McVay, 1971; Winn et al., 1981) and the
standardized hierarchical structure of its song, which facilitates identification in acoustic

analyses (Cholewiak et al., 2013; Payne & McVay, 1971). It is widely accepted that only
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males sing (Darling et al., 2006; Glockner, 1983; Smith et al., 2008), particularly on
breeding grounds (e.g., Darling & Sousa-Lima, 2006; Mercado et al., 2005; Payne &
McVay, 1971; Payne et al., 1983) and along migratory routes (e.g., Clapham & Mattila,
1990; Noad & Cato, 2007; Warren et al., 2020). Although this behavior is associated with
the species’ mating system, its precise function remains debated (e.g., Darling et al., 2006;

Herman, 2017; Herman & Tavolga, 1980; Winn & Winn, 1978).

Several studies indicate a positive correlation between the vocal activity of singing
males and individual abundance (e.g., Au et al., 2000; Homfeldt et al., 2022; Kobayashi
etal., 2021; Noad et al., 2017), although this pattern is not universal (e.g., Sousa-Lima et
al., 2018). Nonetheless, acoustic metrics can work as proxies for abundance, particularly
in breeding grounds where song dominates the soundscape (e.g., Au et al., 2000;
Bittencourt et al., 2016; Kugler et al., 2021; Seger et al., 2016). Among the metrics used
to estimate humpback whale vocal activity, the root mean square sound pressure level
(RMS SPL) and 1/3 octave band levels (TOL) are the most commonly applied (e.g., Au

et al., 2000; Bittencourt et al., 2016; Kigler et al., 2021).

Other approaches have also been explored to characterize vocalization patterns in
other species, such as the Acoustic Complexity Index (ACI) (Pieretti et al., 2011). This
index is based on the premise that biological sounds, such as whale songs, exhibit greater
temporal variability in intensity than anthropogenic noise, which is generally more
constant (Pieretti et al., 2011). ACI values are thus expected to increase with the number
of individuals vocalizing simultaneously. Another potentially informative metric is the
number of singers. Although absolute individual counts are not feasible with a single
recorder, studies suggest it is possible to obtain relative estimates, which typically range

from four to five individuals based on the analysis of the song chorus (e.g., Campelo,
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2020; Homfeldt et al., 2022; Sousa-Lima et al., 2018). These values were positively
correlated with adult humpback whale abundance, as evidenced in Serra Grande on the

Brazilian coast (Campelo et al., 2020).

The Serra Grande region, in southern Bahia, was recognized as a humpback whale
reoccupation area (Gongalves et al., 2018a). The region benefits from simultaneous
acoustic and visual monitoring efforts conducted over four breeding seasons. This data
set offers a unique opportunity to evaluate the performance of different acoustic metrics
in estimating humpback whale population abundance. In this study, we assessed the
feasibility of applying RMS SPL, TOL, ACI, and number of singers as potential acoustic
abundance indicators, using direct counts from visual monitoring as a baseline for
comparison. We hypothesized that: (i) acoustic metrics would positively correlate with
visual estimates of relative whale abundance; (ii) this correlation would be stronger
during dusk and nighttime periods due to increased vocal activity during these periods;
and (iii) frequency band analysis (TOL) would help identify which frequency intervals

are most associated with the species’ vocal activity.

Materials and Methods

Study area

This study was conducted in Serra Grande, located on the southern coast of Bahia,
in northeastern Brazil (Figure 1). The area is notable for its geographical and ecological
features and is considered a strategic area for humpback whale research. Serra Grande is
located over the narrowest stretch of the Brazilian continental shelf (IBGE, 2011), where
the bathymetry presents a steep slope shortly after the shelf break. This configuration

facilitates the coastal approach of cetaceans, making the region particularly relevant for
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acoustic and visual studies of the species during the breeding season (Gongalves et al.,

201843, b).
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FIGURE 1. Location of the study area in Serra Grande, Bahia state, northeastern Brazil. The triangle
identifies the land-based observation platform, at an elevation of 93 m. The lighter gray area corresponds
to the region covered by visual monitoring, with 224.5 km?, where autonomous underwater acoustic
recording units (Oceanpods) were deployed on the seabed, with their respective locations marked by a circle

indicating the corresponding year.

The land-based observation station is located 315 m from the coastline and
elevated 93 m above sea level (14°28'30" S, 39°01'50" W). The visual sampling area was
defined within a 15 km radius, between azimuths 70° and 184°, totaling an area of 224.5

km2 (Figure 1).
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Data collection

Visual monitoring

Visual monitoring was conducted between 7:21 a.m. and 3:00 p.m., generally
twice a week, from July to October in 2014, 2015, 2018, and 2019 (see Table S1). We
applied the scan sampling method with 1-hour sessions (Gongalves et al., 2018a; Righi et
al., 2024), carried out either in the morning (until 12:00 p.m.) or in the afternoon (after
12:00 p.m.). The objective of this monitoring was to assess fluctuations in the relative
abundance of individuals based on the number of humpback whales observed per hour.

Data collection only occurred when sea state was < 4 on the Beaufort scale, with
satisfactory visibility of the area (including the horizon) and no rainfall, allowing for clear
observation of whale groups throughout the sampling area.

Whales were sighted both with the naked eye and with 7x50 binoculars by 3 to 4
observers, one of whom operated a total station. The total station was used to track group
size, composition, behavioral state, and bearing angles. In 2014 and 2015, we used a
TOPCON ES105 total station, and in 2018 and 2019, a SPECTRA PRECISION Focus 2,
both with 30x magnification and 5' accuracy.

Acoustic monitoring

Acoustic data were collected using different versions of an autonomous
underwater recording unit (Oceanpod), developed by the Laboratory of Acoustics and the
Environment of the University of S&o Paulo (LACMAM — USP) (Caldas-Morgan et al.,
2015; Sanchez-Gendriz & Padovese, 2017). Passive acoustic monitoring was conducted
in 2014, 2015, 2018, and 2019. The Oceanpod was deployed 2.0 to 2.5 km offshore,
anchored to the seafloor at depths of approximately 10 m (Figure 1). Data collection took
place between July 11 and November 25 (see Table S1). In 2014, recordings were

performed only during the daylight hours, with continuous recordings from 7:00 a.m. to
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5:00 p.m., conducted in two separate deployments (see Table S1). In the following
seasons, the Oceanpod was programmed to record continuously 24 hours per day without
interruption (see Table S1).

The sampling rate varied by year: in 2014 and 2015, recordings were made at
11,025 Hz using Oceanpod 1.0, with a system sensitivity of -150 dB re 1 V/uPa (WAV
format); in 2018 and 2019, recordings were made at 16,000 Hz using Oceanpod 3.0, with
a system sensitivity of -146 dB re 1 V/uPa (WAYV format) (see Table S2).

Overlap of monitored areas

The visual and acoustic monitoring areas overlapped, as demonstrated by
calculations described in (Campelo et al., manuscript submitted for publication), using
the basic sonar equation (SL = RL + TL; Au et al., 2006), where SL is the source level,
RL is the received level, and TL is the transmission loss. Although acoustic recorders can
register humpback whale singers beyond the 15 km radius used in visual monitoring, this
does not compromise the compatibility between methods, as the 15 km area serves as a
representative sample of whale number fluctuations in the broader region. The critical
aspect for ensuring compatibility is that the acoustic detection range is not significantly
smaller than the visual range.

Considering that the Oceanpods were deployed 2 km offshore, the songs needed
to be detectable up to at least 13 km. For this evaluation, we used source level (SL) values
from the literature (e.g., Au et al., 2006; Girola et al., 2019), received level (RL) estimates
based on our dataset, and transmission loss (TL) calculations assuming cylindrical
spreading, appropriate for the 10 to 50-meter depths of the study area. The results
indicated that the estimated source levels are consistent with published values, confirming

that the acoustic detection range is compatible with the visual monitoring area.
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Acoustic Analysis

Acoustic Sampling

To evaluate the acoustic metrics—RMS SPL, TOL, ACI, and number of singers—
only the days with simultaneous visual and acoustic monitoring were considered. On each
of these days, up to two acoustic samples were used: one between 7:00 a.m. and 3:05
p.m., corresponding to the time window of the daytime visual scans, and an additional
one between 6:00 p.m. and 6:00 a.m., corresponding to the dusk/night period, which is
the peak vocal activity window for singers in the region (Campelo et al., 2020).

The acoustic metrics were derived from the soundscape recorded during the
selected segments, which is predominantly composed of the male chorus during the
breeding season (Au et al., 2000; Bittencourt et al., 2016; Seger et al., 2016). The chorus
is defined as the asynchronous overlap of songs produced by multiple singing males

(Figure 2).
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FIGURE 2. Example spectrogram of a humpback whale song chorus recorded in 2018 in Serra Grande,

Bahia state (Brazil), ranging from 0 to 1,500 Hz.

With the exception of the estimate of the number of singers, all acoustic metrics
were obtained from 10-minute audio segments. During data collection, the recorders were
programmed to split recordings into continuous 15-minute files. Therefore, we selected

the first 10 minutes of each file, as close as possible to the start time of the visual scan,



93

always matching the visual monitoring schedule. For the dusk or nighttime period, the
10-minute window was defined based on a randomly selected time within that interval.

Data regarding the number of singers were obtained from the study by Campelo
(2020), in which the samples were analyzed using Raven Pro 1.6 software, following this
configuration: spectrograms with FFT and a Hann window with 1,024 points and 50%
overlap. In that study, aural and visual inspections were performed systematically every
30 minutes using 2-second windows, in which the number of singers was counted on a
scale from O to 4, with 4 representing four or more singers. In the present study, we only
used the first two sample windows that coincided with the visual survey schedule. For the
dusk or nighttime period, a random time was selected between 6:00 p.m. and 6:00 a.m.,
and the second window was defined immediately after that starting point.

During these estimations, the signal-to-noise ratio (SNR) was set to a minimum
threshold of 10 dB (Charif et al., 2010), and, in some cases, a visual assessment of
background noise interference was used as a criterion to exclude sample windows in
which a reliable estimate of the number of singers was not possible (Campelo, 2020).
Following the same principle, the remaining acoustic metrics were not calculated for time
intervals in which the SNR was below the 10 dB threshold, particularly because the SPL
values in these segments were likely to be heavily influenced by background noise. This
exclusion is justified by the increased likelihood that, during these periods, background
noise affected sound pressure levels, compromising the reliability of these metrics as
indicators of whale acoustic activity.

Acoustic Data Processing

All audio segments were processed in the R statistical software (R Core Team,
2023). The PAMGuide package was used to calculate RMS SPL and TOL (Merchant et

al., 2015), and the Seewave package was used to calculate ACI (Sueur et al., 20083, b).
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For the acoustic analyses, the data were downsampled to a frequency range of 50 to 3,000
Hz, resulting in an analysis bandwidth of 50 to 1,500 Hz. The lower limit was defined to
minimize the intrinsic noise of the recording system. This choice was not based on the
equipment’s self-noise curve, as such information was not provided (Caldas-Morgan et
al., 2015). Instead, it was based on the frequency response of the preamplifier, as
described by Caldas-Morgan et al. (2015), along with the prior characterization of song
units present in our dataset (Gongalves, 2017). These factors also guided the selection of
the upper limit, following the methodological approach adopted by Kigler et al. (2021).

RMS SPL and TOL analyses were performed using the Fast Fourier Transform
(FFT), with Hann windows of 1 second and 50% overlap. This setup yielded a temporal
resolution of 1 second and a time step of 0.5 seconds. During processing, end-to-end
calibration was applied, using the system sensitivity corresponding to the recorder version
used in each sampling year (see Table S2). To optimize processing, audio files were split
into 10 blocks of 60 seconds each, using the chunksize = 60 function from the PAMGuide
package (Merchant et al., 2015). For TOL estimates, we selected the frequency bands
from 50 to 1,000 Hz, which best represented the dominant frequencies of the song units
described for this population (Gongalves, 2017). This selection also aimed to minimize
the interference from other signals in the Serra Grande soundscape, such as fish choruses
(Oliveira, 2021).

For ACI calculations, a Hanning window with 512 points and no overlap was
used. This configuration resulted in a temporal resolution of approximately 46 ms for data
sampled at 11,025 Hz and 32 ms for data sampled at 16,000 Hz. During processing, data
were grouped into 10 blocks of 60 seconds (clusters), and the final ACI value

corresponded to the mean of the values obtained for each block.
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The acoustic metrics—RMS SPL, TOL, and ACl—were calculated based on
formulas established in the literature (e.g., Kugler et al., 2021; Merchant et al., 2015;
Pieretti & Morri, 2011).

Statistical Analyses

RMS SPL and TOL metrics were calculated as the median of values obtained from
10-minute samples, following the methodology proposed by Merchant et al. (2015). The
median for each sample was considered representative of the sound pressure level during
the respective time period. The daytime period is hereafter referred to as daytime, and the
dusk/nighttime period is referred to as nighttime. The number of singers was calculated
as the mean of the two samples analyzed within each one-hour interval covered by the
visual monitoring.

All analyses were conducted in the R statistical software (R Core Team, 2023).
The annual mean of relative whale abundance and acoustic metrics (except TOL) were
calculated using the dplyr package (Wickham et al., 2023). For data visualization,
boxplots were generated using the ggplot2 package (Wickham, 2016). Data normality,
stratified by time period, was tested using the Shapiro-Wilk test from base R. Due to the
non-normal distribution, differences between time periods were assessed using the non-
parametric Wilcoxon test.

The central aim of this study was to investigate whether acoustic metrics could
explain the relative abundance of whales. To this end, visual abundance estimates were
used as the response variable, while RMS SPL, ACI, and the number of singers were
included as predictors in statistical models. The corresponding visual abundance value

was then assigned to that day and paired with both the daytime and nighttime estimates.
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Sampling effort varied substantially between years (see Figure S3). Due to the
unbalanced sampling design, we chose not to include the effect of year in the model,
aggregating all years in the analysis.

Models were fitted using the negative binomial distribution to account for
overdispersion, identified via the Pearson dispersion test using the
check_overdispersion() function from the performance package (Ludecke et al., 2021).
An initial model was fitted including time period (shift) as a fixed effect interacting with
the acoustic metrics. The goal was to assess whether the relationship between acoustic
metrics and relative abundance of whales varied between daytime and nighttime. Given
that humpback whale song can extend across multiple consecutive audio files, potentially
compromising sample independence, we performed a temporal autocorrelation test on the
model residuals using the acf() function from base R. The test indicated positive
autocorrelation, and as a solution, we chose to fit separate models for each time period.
This approach allowed us to maintain the analysis by time of day while minimizing the
effects of temporal dependence between samples. The models were then compared using
AIC, R?, and p-values. As there were no nighttime data in 2014, this season was excluded
from the model.

TOL bands were initially considered as potential predictors of relative whale
abundance, with the aim of investigating whether specific frequency ranges were more
strongly associated with whale presence. However, due to strong collinearity between
bands (see Figure S4), evaluated using the cor.test() function from base R (stats) with
Pearson correlation, we chose not to include them in the predictive models. As an
alternative, TOL bands were analyzed using time series to identify seasonal patterns in
sound pressure levels across frequency bands throughout the monitoring period. In

parallel, relative abundance data were plotted over time to enable visual comparison
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between whale presence patterns and acoustic environment changes across different

frequency bands.

Results

Sampling effort

In total, 71 days of simultaneous visual and acoustic monitoring were conducted,
and the corresponding data were included in our final dataset (see Table S1 and Figure
S3). Of these, 18, 10, 20, and 23 days correspond to the years 2014, 2015, 2018, and 2019,
respectively (see Figure S3).

Relative Abundance and acoustic metrics across periods and years

The whale relative abundance registered during the study period ranged from 0 to
19 individuals per hour. A gradual increase was observed over the years, with mean
values of 3.4 (SD = 2.8) in 2014, 4.6 (SD = 3.5) in 2015, 7.5 (SD =5.7) in 2018, and 7.4

(SD =4.4) in 2019, slightly lower than the previous year (Figure 3).
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FIGURE 3. Average relative abundance of adults sighted along with their associated standard deviation,

in the Serra Grande region, Bahia state, Brazil, during the breeding seasons of 2014, 2015, 2018, and 2019.
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Regarding acoustic metrics, 2014 showed the highest mean RMS SPL (x = 108.0;
SD = 8.4) (Table 1). However, comparisons between time periods were not possible for
that year due to the exclusively daytime sampling effort (see Table S1). In 2015, mean
sound pressure levels were higher during the daytime (Figure 4a); however, the Wilcoxon
test did not indicate a statistically significant difference between time periods (Table 1).
In the subsequent seasons (2018 and 2019), RMS SPL was significantly higher during the
nighttime (Table 1). Similar to the pattern observed for relative whale abundance, the
mean RMS SPL in 2019 was slightly lower than that recorded in the previous year (Table
1, Figure 4a).
TABLE 1. Wilcoxon test results for differences between time of day in acoustic metrics. The mean (M)
and standard deviation (SD) of each acoustic metric (SPL RMS, ACI, and number of singers) by year and

time of day (daytime and nighttime) are presented. Significance levels for the p-values are indicated as

follows: p < .05 (*), p <.01 (**), and p <.001 (***).

Daytime Nighttime p-value
Acoustic metrics M SD M SD
RMS SPL (dB re 1 108 8.37 - - - -
2014 | VHPe)
ACI 86.5 4.15 - - - -
Number of singers 0.83 0.95 - - - -
RMS SPL (dB re 1 97.2 11.6 94.3 8.01 .85
2015 | VP
ACI 829 32 798  3.12 <05
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Number of singers 0.9 0.77 1.65 0.85 .06
RMS SPL (dB re 1 91.8 5.42 98.7 7.54 < 01 fola
V/uPa

2018 | VP
ACI 606  2.39 589  3.15 <01
Number of singers 1.79 1 2.98 0.84 < 001 ***
RMS SPL (dB re 1 89.8  8.34 957  6.79 < 01 o
V/uPa

2019 | VP
ACI 57.3 1.18 57.6 3.21 .26
Number of singers 1.17 0.93 1.96 0.99 < 01 **

ACI values were higher in the 2014 and 2015 seasons, with a marked decrease in
2018 and 2019 (Figure 4b). In 2015 and 2018, ACI was significantly lower during the
nighttime (p < .05 and p < .01, respectively) (Table 1), which may suggest a possible
negative relationship with whale abundance, given the simultaneous declines observed
over the years (Figure 4b). This pattern contrasts with RMS SPL and relative whale
abundance, as well as with the number of singers, which increased up to 2018, followed
by a decline in 2019 (Figure 4c). For the number of singers, nighttime estimates were
significantly higher compared to the daytime in both 2018 (p <.001) and 2019 (p <.01),

with a marginally significant difference in 2015 (p = 0.06).
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FIGURE 4. Mean values and standard deviations of (a) RMS SPL, (b) ACI, and (c) number of singers in
Serra Grande, Bahia, Brazil, during the breeding seasons of 2014, 2015, 2018, and 2019. Data are grouped

by time of day: daytime (light blue boxes) and nighttime (dark blue boxes).
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Acoustic metrics as predictors of abundance

The daytime model showed better performance (AIC = 282.3) compared to the
nighttime model (AIC = 307.2), as well as higher explanatory power (Rz = 0.28) (Table
2). In the daytime model, RMS SPL had a positive and significant effect on whale
abundance (p <0.01) (Table 2, Figure 5a), while ACI showed a significant negative effect
(p <£0.05) (Table 2, Figure 5b). The number of singers exhibited a marginally significant
positive effect (p = 0.06) (Table 2, Figure 5c). In the nighttime model, none of the
variables were statistically significant, although the effects showed the same pattern of
positive relationships for RMS SPL and number of singers, and a negative relationship

for ACI (Table 2).

TABLE 2. Summary of the models fitted for the daytime and nighttime periods, presenting AIC values,
the explanatory power of the models (Nagelkerke's R?), and the estimated coefficients for each predictor
variable, along with their associated significance levels (p-values). Significance levels are indicated as

follows: p < .05 (*), p <.01 (**), and p < .001 (***).

Period AlIC R? Variable Estimate p-value
Intercept 0.087 .94
RMS SPL 0.032 p=<.01 wx
Daytime 282.3 0.28 ACI 20.023 p<.05 *
Number of singers 0.177 .067
Intercept 0.985 .530
RMS SPL 0.019 160
Nighttime 307.2 0.22 ACI -0.020 086
Number of singers 0.128 182
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FIGURE 5. Predictions from the negative binomial model fitted for the daytime period, showing the expected humpback whale abundance as a function of (a) RMS SPL (Root
Mean Square Sound Pressure Level), (b) ACI (Acoustic Complexity Index), and (c) number of singers. Only the daytime model is presented, as it was the only one with

statistically significant effects. Shaded areas represent 95% confidence intervals around the predicted values.
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Seasonal dynamics of sound pressure levels and relative whale abundance

across years

The analysis of time series allowed for a more detailed examination of the
individual contribution of each frequency band to sound pressure levels throughout the
season and across different monitoring years (Figure 6). In 2014, the low-frequency bands
(50 to 126 Hz) exhibited a more pronounced seasonal pattern compared to the subsequent
years. Still in that season, after a decline in sound levels recorded at the end of the
reproductive period, a new increasing trend was observed. In the same year, peaks in
vocal activity and relative abundance did not coincide precisely: vocal activity peaked

earlier than the abundance peak registered through visual scans (Figure 6).

In the following years, a trend toward stabilization was observed in the low-
frequency bands (50 to 79 Hz), while seasonal variations became more pronounced in the
158 to 1,000 Hz range, generally showing a decreasing trend over the course of the
season. In 2019, the year with the most completed sampling effort, there was a progressive
increase in TOL levels and relative whale abundance from the beginning of the season,
with peaks occurring in mid-August for sound pressure levels and early September for
visual abundance. As in 2014, peaks in acoustic activity preceded the peak in visually

observed abundance (Figure 6).
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Fig. 6. Daily fluctuations in sound pressure levels (RMS SPL, dB re 1 pPa) across third-octave frequency bands
within the range selected for TOL calculations (501,000 Hz), based on daytime acoustic recordings during the
humpback whale breeding seasons of 2014, 2015, 2018, and 2019 in Serra Grande, Bahia. For each year, the panel
is accompanied by modelled estimates of relative whale abundance obtained from visual surveys. A LOESS-

smoothed curve was fitted to the acoustic data, with shaded areas representing 95% confidence intervals.

Discussion

The Serra Grande region presents geographical features that are favorable for
monitoring humpback whales along the Brazilian coast. The combination of an elevated land-
based observation point located near the shoreline and the narrowing of the continental shelf
contributes to an extended visual range. In this area, whales tend to concentrate closer to the
coast compared to other regions of occurrence in Brazil (Gongalves et al., 2018a, b). These
characteristics make Serra Grande a strategic site for the integrated application of visual and
acoustic monitoring, supporting more robust comparative analyses. This is particularly relevant
for the present study, which aimed to assess the potential of acoustic metrics as indicators of
humpback whale presence, where a gradual increase in the number of individuals was observed
over the years (Gongalves et al., 2018a; Righi et al., 2024). This trend is consistent with the
hypothesis that the population has been expanding its range of use to areas previously occupied
before the whaling period. Regions where higher whale concentrations have been observed,
(Rossi-Santos et al., 2008), such as the Abrolhos Bank (e.g., Andriolo et al., 2010; Bortolotto
et al., 2016), may be approaching their carrying capacity, leading to increased use of more
northern areas, such as Serra Grande (Righi et al., 2024).

General patterns over the years

Among the acoustic metrics analyzed, the number of singers was the only one that
closely followed the pattern of variation in visual abundance across annual means, showing a
continuous increase from 2014 to 2018, followed by a slight decrease in 2019. Both RMS SPL

and ACI exhibited their highest annual means in 2014; however, while RMS SPL increased
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again over the subsequent years, the ACI followed a decreasing trend throughout the study
period.

The behavior of RMS SPL varied across years and time periods. In 2014 and 2015, the
highest sound pressure levels were recorded during the daytime. However, only in 2015 were
nighttime data available for comparison, and the difference between periods was not
statistically significant. In contrast, in 2018 and 2019, both RMS SPL and the number of singers
were significantly higher during the nighttime. This pattern aligns with the period of peak
singing activity described for the species (e.g., Au et al., 2000; Cerchio et al., 2010; Espafiol-
Jiménez & Schaar, 2018; Homfeldt et al., 2022; Kgler et al., 2024), and may reflect behavioral
adjustments that emerge as population density increases, a pattern already described for this
species (e.g., Dunlop & Frere, 2023; Noad et al., 2017).

In a study conducted on the eastern coast of Australia, Dunlop and Frere (2023)
observed that, as the population increased, the absolute number of singing males also grew.
However, the proportion of singing males relative to the total population size declined over
time. This suggests that singing behavior, although it increases in absolute terms with
population growth, does not maintain a constant proportional relationship, which may reflect
shifts in reproductive strategies over time (Dunlop & Frere, 2023).

In light of this, acoustic metrics may reflect broad trends in relative whale abundance,
since vocal activity is also influenced by behavioral factors. Despite this, we do not know if this
reflex can be directly proportional due to possible changes in behavioral strategies. In any case,
it is important to highlight that the study by Dunlop and Frere (2023) was based on a time series
of more than a decade, conducted in a migratory corridor, where the behavior of singing males
may differ from that observed in breeding grounds (Kugler et al., 2021). Therefore, only long-
term monitoring of our area would allow us to determine whether the proportion of singers

relative to total abundance also shows a decreasing trend.
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So far, our data indicate that the annual mean number of singers tracks variations in
relative abundance, including the decline observed in 2019. However, the exclusion of year as
a fixed effect in the models prevents a more precise evaluation of the specific effect of this
variable, which may be associated with changes in population density over time.

The occurrence of higher RMS SPL levels even in years with lower whale abundance
suggests a greater contribution from other biological sources to the acoustic landscape,
especially given the low levels of anthropogenic noise in the region (Oliveira, 2021). In the
marine environment, soundscape studies have mainly highlighted the contributions of sounds
produced by crustaceans, fishes, and cetaceans, which can vary across daily and seasonal
patterns and respond to changes in the sound environment (e.g., Bittencourt et al., 2016;
Buscaino et al., 2016; Lammers et al., 2008; Pieretti et al., 2017; Radford et al., 2008).

One possible explanation for our results is that the increasing population density of
whales and the intensification of their singing may have influenced the acoustic activity of other
marine species. In a soundscape study conducted in a humpback whale breeding area in the
South Atlantic, Bittencourt et al. (2016) identified fish choruses as a key component of the local
biophony, occurring year-round but with reduced intensity during the winter—precisely when
male whale songs dominated the acoustic environment. This suggests that the presence and
vocal behavior of whales may modulate the contribution of other biological sources to the
soundscape.

In the case of Serra Grande, it is plausible that the progressive increase in whale
occupancy and vocal activity over the years has altered the local acoustic profile. Among the
possible biological contributors to RMS SPL variability, fishes emerge as the most likely
candidates, especially considering that the frequency range analyzed in this study (50-1,500
Hz) excludes most crustacean-generated sounds but fully or partially encompasses the

frequency bands of both fish choruses and whale songs (Oliveira, 2021). A better understanding
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of this interaction could be achieved through a year-round assessment of fish choruses in the
study area, allowing for the identification of temporal patterns and potential shifts in their
acoustic behavior in response to whale presence.

Acoustic metrics as predictors of abundance

The application of predictive models allowed us to evaluate whether the analyzed
acoustic metrics can explain the variations in humpback whale abundance and to assess the
effect of period of day in these comparisons. With the exception of ACI, both RMS SPL and
the number of singers showed a positive relationship with abundance. Although annual means
indicated greater vocal activity during the nighttime—as previously discussed—the model
fitted for the daytime period presented better performance in terms of fit and explanatory power.

During the daytime period, RMS SPL and ACI were statistically significant in
explaining the relative abundance of humpback whales, while the number of singers showed a
positive trend, though only marginally significant. It is well established that humpback whales
exhibit higher acoustic activity at night—a pattern previously described for the Serra Grande
region (Campelo et al., manuscript submitted for publication) and also observed in other
breeding areas (e.g., Au et al., 2000; Cerchio et al., 2010; Espafiol-Jiménez & Schaar, 2018;
Homfeldt et al., 2022; Kiigler et al., 2024).

The lack of statistical significance for the number of singers in the model, despite its
alignment with annual abundance patterns, may be related to the limitations of its discrete scale,
particularly because values equal to or greater than four singers were grouped into a single
class. This likely reduced the metric’s sensitivity in contexts of high vocal density. Thus,
although the number of singers generally reflects temporal variations in abundance, the
statistical association between the number of singers and whale abundance may not be
significant in the models. In other words, the number of singers may follow the same trend as

relative abundance, but the limited resolution of the metric reduces its ability to capture
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quantitative nuances. As a result, modeling abundance based on this variable may not reveal a
strong statistical association, even though the two are biologically related.

Finally, it is important to highlight that the structural complexity of the song may also
influence the performance of acoustic metrics. The ACI was developed to represent the
complexity of biological sounds in soundscapes, based on the variation in signal intensity over
time within different frequency bands (Pieretti et al., 2011). Rather than quantifying absolute
energy, the index accounts for short-term fluctuations in acoustic energy (Eldridge et al., 2018;
Farina et al., 2011). Although ACI has been shown to correlate positively with species richness
(e.g., Davies et al., 2020) and acoustic activity in marine environments (e.g., Buscaino et al.,
2016; Pieretti et al., 2017), its performance as an ecological indicator is still considered context-
dependent. A recent review focused on birds showed that ACI results can vary considerably
depending on signal structure, soundscape type, and species composition (Bateman & Uzal,
2022). In benthic environments, Davies et al. (2020) found that the relationship between ACI
and species richness varied across years, further highlighting the influence of seasonal and
interannual changes in the soundscape on the index’s performance.

In the case of humpback whales, this variability is even more relevant. The species' song
has a hierarchical organization composed of three levels: sound units are grouped into phrases,
repeated phrases form themes, and the succession of different themes composes the full song
(Cholewiak et al., 2013; Payne & McVay, 1971). This structure is dynamic and changes over
time through the addition, removal, reordering, or alteration of sound units—either individually
or in combination—which can directly affect song complexity (e.g., Allen et al., 2018; Garland
etal., 2011; Gongalves et al., 2023; Tougaard & Eriksen, 2006; Winn & Winn, 1978).

The influence of this dynamic context is evident in the results of the present study,
particularly when considering the abrupt shift in the song of the Brazilian humpback whale

population (BSA) described by Gongalves et al. (2023) between 2017 and 2018. This transition
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was marked by a notable reduction in the number of sound unit types and, consequently, a
simplification of vocal structure. In line with this change, we observed a significant decline in
acoustic complexity in 2018, which persisted into the following year. Changes of this nature
can compromise the sensitivity of the ACI to detect increases in acoustic activity, as simplified
songs—even when produced by a larger number of individuals—tend to generate less signal
intensity fluctuation and, therefore, lower or more stable index values. These results reinforce
that structural changes in humpback whale songs directly affect ACI performance, limiting its
effectiveness as an indicator of abundance.

Daily variation in sound pressure levels and their relationship with abundance

The seasonal presence of humpback whales in the region follows a consistent pattern of
increasing numbers from July, peaking between late August and early September, followed by
a gradual decline in sightings until the end of October (Gongcalves et al., 2018a; Righi et al.,
2024). This migratory behavior is well documented in other breeding areas of the species (e.g.,
Baker & Herman, 1981; Frankel & Clark, 2002; Martins et al., 2001; Mattila et al., 1994;
Morete et al., 2008; Smultea, 1994) and reflects the gradual arrival of individuals to the breeding

grounds, followed by their departure at the end of the season (Dawbin, 1997).

The analysis of time series based on the TOL (third-octave levels) allowed a more
detailed assessment of the seasonal variation in sound pressure levels by decomposing signal
energy across frequency bands within the 50 to 1,000 Hz range. Unlike RMS SPL, which
considers the entire spectrum, TOL enables identification of specific patterns by frequency band
(Merchant et al., 2015). Overall, a declining trend in TOL levels was observed as the season

progressed. However, shifts in patterns between frequency bands and years were noted.

The year 2014 stood out as the only one in which the lowest frequency bands—
particularly the 50 Hz band—showed a distinct seasonal pattern, with elevated levels at the

beginning of the season, a peak prior to the period of highest visual abundance, and an
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increasing trend in October when abundance was already declining. In contrast, bands between
158 and 1,000 Hz had higher levels at the season’s start followed by a gradual decrease—a

pattern repeated in subsequent seasons.

Although the lower frequency bands did not exhibit seasonal variation in later years,
their relevance for characterizing the species’ acoustic environment should not be dismissed.
Gongcalves (2017) reported, for 2014, the presence of song units with energy peaks at 50 Hz—
a frequency absents in the vocal structures described for 2015, which shifted energy to higher
frequency bands. This change may reflect a vocal reorganization over time, consistent with the
dynamic nature of humpback whale song (e.g., Allen et al., 2018; Garland et al., 2011;
Gongcalves et al., 2023; Tougaard & Eriksen, 2006; Winn & Winn, 1978). Additionally, the
predominance of energy in the lower bands in 2014 may indicate a greater contribution from

other components of the acoustic landscape, such as the fish choruses discussed earlier.

In seasons with broader temporal coverage, such as 2019, TOL levels in the 158 to 1,000
Hz bands showed an increasing pattern until August, followed by a progressive decline toward
the end of the season, reflecting trends observed in previous years. In other breeding areas,
humpback whale song has been identified as the primary noise source above 200 Hz (e.g.,
Sirovic et al., 2013), and the consistency of this pattern across seasons suggests that this
frequency range directly captures the species’ vocal activity. However, the peak in acoustic
activity preceded the peak in visual abundance, suggesting that singing intensifies soon after
arrival to the breeding area and decreases as the season advances. This temporal lag reinforces
that SPL—and consequently TOL—reflect not only the presence of individuals but also their

behavioral state.

Overall, the frequency band analysis demonstrated that acoustic energy throughout the

season is not homogeneous. Bands between 158 and 1,000 Hz were more consistent across
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years and more closely aligned with visual abundance patterns. Conversely, the stronger

contribution of lower bands in 2014 highlights the need to consider seasonal particularities.

Conclusion

The evaluated acoustic metrics exhibited varying levels of sensitivity and explanatory
power in relation to the relative abundance of humpback whales. The Acoustic Complexity
Index (ACI) showed a more unstable performance, influenced by interannual variations in song
structure, which limits its applicability as a direct abundance indicator. In contrast, both the

number of singers and RMS SPL proved to be good predictors, albeit with specific limitations.

The number of singers consistently aligned with population patterns over the years,
however, its discrete and limited scale reduced statistical sensitivity in the models. Although it
reflects biologically relevant patterns, the robustness of this sensitivity requires confirmation
through assessments over broader temporal scales. RMS SPL demonstrated sufficient
sensitivity to correlate with abundance but should be interpreted cautiously, especially in low
population density contexts, as it may also reflect acoustic activity from other species vocalizing

within the humpback whale song frequency range.

In summary, combining the number of singers and RMS SPL enhances the explanatory
power of these metrics, allowing the retrieval of relevant temporal information across different
scales — interannual, seasonal, and daily. While they do not replace traditional population
estimation methods, due to their sensitivity to behavioral variations, these metrics represent a
promising complementary tool in passive acoustic monitoring. When interpreted together, they
effectively compensate for each other’s limitations: RMS SPL captures broader fluctuations in

the soundscape, whereas the number of singers offers a direct estimate of species-specific vocal
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activity. In this context, visually confirmed singer counts help qualify the interpretation of SPL,
assisting in distinguishing between different biological sound sources. Therefore, the combined
use of these metrics, interpreted alongside ecological and behavioral information, supports a
more integrated and robust understanding of humpback whale population and acoustic

dynamics.
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CONSIDERACOES FINAIS

Esta tese integra o estado da arte sobre as aplicacdes do monitoramento acustico passivo
(MAP), por meio de gravadores autbnomos fixos no estudo de cetaceos, a uma investigacao
conduzida sobre o uso de métricas acusticas como proxies de abundéncia de baleias-jubarte,

em Serra Grande, Bahia, uma &rea reprodutiva da espécie na costa brasileira.

A aplicacdo do MAP com gravadores autbnomos tem se expandido nas Ultimas décadas,
com maior concentracdo de estudos no Hemisfério Norte. No entanto, observa-se um
crescimento recente da contribuicdo do Hemisfério Sul, ampliando o conhecimento sobre a
utilizacdo dessa abordagem em diferentes contextos geograficos, bem como em distintas
espécies ou populacdes. Foram mapeadas as espécies mais frequentemente monitoradas
acusticamente, os recortes espaciais com maior densidade de amostragem e os tipos de
informacdo bioldgica acessada. A maior parte dos estudos abordou padres sazonais de
ocorréncia e uso do habitat, com destaque para a aplicagdo do MAP em areas de dificil acesso,

o0 que reforca seu papel como ferramenta essencial no monitoramento em regides remotas.

As aplicacdes do MAP em estimativas populacionais com base exclusivamente em
dados acusticos ainda sdo relativamente pontuais. No entanto, apesar de estarem concentradas
em um numero limitado de espécies bem conhecidas, o fato de terem sido empregadas em
diferentes grupos e por meio de distintas abordagens metodoldgicas evidencia o crescente
interesse pela tematica e as possibilidades emergentes dessa estratégia. Esses avan¢cos apontam
para o potencial do MAP em contribuir com andlises mais robustas sobre a dinamica

populacional.

As analises conduzidas em Serra Grande demonstraram o potencial das métricas
acusticas para refletir tendéncias de abundéancia relativa de baleias-jubarte. Os resultados
indicaram que o numero de cantores acompanhou a variagdo interanual no numero de
individuos registrados visualmente, enquanto os niveis de pressdo sonora (SPL) apresentaram
boa sensibilidade para captar variagdes de abundancia em uma escala mais fina. No entanto, é
importante destacar que o SPL n&o isola exclusivamente as vocaliza¢des das baleias, podendo
refletir contribuicdes de outras fontes sonoras presentes na paisagem acustica. Sons biolégicos,
como coros de peixes, por exemplo, podem influenciar os niveis de SPL em anos de menor

abundancia de baleias, 0 que exige cautela na interpretacéo desses dados.
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A andlise por bandas de 1/3 de oitava revelou que as frequéncias entre 158 e 1.000 Hz
foram as mais consistentes ao longo dos anos, refletindo de forma robusta a atividade vocal da
espéecie. Um padrdo similar foi observado entre as temporadas de 2015, 2018 e 2019, enquanto
a temporada de 2014 apresentou variacbes mais expressivas. Essas diferencas estdo alinhadas
as particularidades da estrutura do canto descritas na literatura para aquele ano, ressaltando a
importancia de considerar previamente a estrutura vocal da espécie ao longo das temporadas.
Outro resultado que reforca essa necessidade é o comportamento do indice de Complexidade
Acustica (ACI). A sensibilidade do ACI foi mais fortemente influenciada por alteracdes na
estrutura do canto do que por variagdes na abundéncia de baleias. A simplificacdo abrupta do
canto, reportada entre 2017 e 2018 para a populacéo de baleias que migra para a costa brasileira,
impactou diretamente o desempenho do ACI, tornando-o menos eficaz como preditor de

abundancia nesse contexto.

Conclui-se que a combinagdo entre métricas acusticas mostrou-se promissora para
inferéncias sobre a presenca e a atividade reprodutiva da espécie, refletindo, até o presente
momento, mudancas na abundancia de baleias na regido. O conjunto de dados obtido para Serra
Grande constitui uma linha de base valiosa sobre a atividade vocal de baleias-jubarte em uma
area de baixa influéncia antrépica, cuja paisagem acuUstica ainda preserva caracteristicas
naturais. Os padrbes de ocorréncia vocal e de pressao sonora descritos neste estudo podem
servir como referéncia para futuras comparacdes, sobretudo diante do empreendimento
atualmente em construcdo na regido, como o Complexo Logistico e Intermodal Porto Sul. A
proximidade da costa, a plataforma continental estreita e a presenca de um ponto fixo de
observacao tornam Serra Grande um sitio estratégico para 0 monitoramento de longo prazo,

permitindo a associacdo de dados visuais e acusticos com alta resolucdo temporal e espacial.
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MATERIAL SUPLEMENTAR CAPITULO I: Listening porpoises, dolphins and whales around the world: what does passive acoustic

monitoring have to tell us?

TABLE S1. Description of eligible studies with the study identification (ID), authors, publication year, title, study area, corresponding ocean, target species (common and

scientific names), and taxonomic group.

ID Authors Year Title Study area Ocean Species (Common name)  Species Group

(Scientific name)

1 Sirovi¢, 2007 Blue and fin whale call Antarctic Southern  Blue whale; Fin Whale Balaenoptera Mysticeti
Hildebrand & source levels and Peninsula Ocean musculus;
Wiggins propagation range in the Balaenoptera
Southern Ocean physalus
2 Johnstonetal. 2008 Temporal patterns in the Cross North Beaked whale Unidentified Odontoceti
acoustic signals of beaked Seamount Pacific specie
whales at Cross Seamount Ocean
3 Soldevilla, 2010 Spatio-temporal comparison Southern North Pacific white-sided dolphin  Lagenorhynchus  Odontoceti
Wiggins & of  Pacific  white-sided California Pacific obliquidens
Hildebrand dolphin echolocation click Bight Ocean

types
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acoustic monitoring

4 Munger, 2011 North Pacific right whale up-  Bering Sea North North Pacific right whale ~ Eubalaena Mysticeti
Wiggins & call source levels and Pacific japonica
Hildebrand propagation distance on the Ocean
southeastern Bering Sea
shelf
5 Oswald, Au & 2011 Minke whale (Balaenoptera Oahu, Hawaii  North Minke whale Balaenoptera Mysticeti
Duennebier acutorostrata) boings Pacific acutorostrata
detected at the Station Ocean
ALOHA Cabled
Observatory
6 Raymentetal. 2011 Listening for a needle in a Manukau, South Maui's dolphin Cephalorhynchus  Odontoceti
haystack: Passive acoustic Kaipara, Pacific hectori maui
detection of dolphins at very Raglan, and Ocean
low densities Kawhia
Harbours,
New Zealand
7 Soldevilla et 2011 Risso's and Pacific white- Southern North Risso's dolphin; Pacific Grampus griseus; Odontoceti
al. sided  dolphin habitat California Pacific white-sided dolphin Lagenorhynchus
modeling  from passive Bight Ocean obliquidens
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8 Stimpertetal. 2011 Common humpback whale Stellwagen North Humpback whale Megaptera Mysticeti
(Megaptera novaeangliae) Bank National Atlantic novaeangliae
sound types for passive Marine Ocean
acoustic monitoring Sanctuary,
Gulf of Maine
9 Ackleh et al. 2012 Assessing the Deepwater Mississippi North Sperm whale Physeter Odontoceti
Horizon oil spill impact on Coast, Gulf of Atlantic macrocephalus
marine mammal population Mexico Ocean
through acoustics:
Endangered sperm whales
10 Morano etal. 2012 Acoustically Detected Year- Massachusetts North North Atlantic right whale  Eubalaena Mysticeti
Round Presence of Right Bay, Gulf Atlantic glacialis
Whales in an Urbanized Maine Ocean
Migration Corridor
11 Moranoetal. 2012 Seasonal and geographical Massachusetts North Fin whale Balaenoptera Mysticeti
patterns of fin whale song in Bay and New Atlantic physalus
the western North Atlantic York Bight Ocean
Ocean
12 Mussoline et 2012 Seasonal and diel variation Stellwagen North North Atlantic right whale  Eubalaena Mysticeti
al. in North Atlantic right whale Bank National Atlantic glacialis
up-calls: Implications for Marine Ocean

management and

Sanctuary and
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conservation in the

northwestern Atlantic ocean

Jeffreys
Ledge, Gulf of
Maine

13 Mungeretal. 2012 Humpback whale American North Humpback whale Megaptera Mysticeti
(Megaptera novaeangliae) Samoa, Atlantic novaeangliae
song occurrence at Polynesia Ocean
American Samoa in long-
term  passive  acoustic
recordings, 2008-2009

14 Newhall etal. 2012 Long distance passive Offshore North Sei whale Balaenoptera Mysticeti
localization of vocalizing sei  Atlantic City, Atlantic borealis
whales using an acoustic New Jersey Ocean
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the central and western and Western
North Pacific Ocean North Pacific
76 Rieraetal. 2019 Passive acoustic monitoring Vancouver North Killer Whale Orcinus orca Odontoceti
off Vancouver Island reveals Island, Canada Pacific
extensive use by at-risk Ocean

Resident killer whale

(Orcinus orca) populations




153

77 Silvaetal. 2019 Temporal and  spatial Stellwagen North There wasn't identification  NA Odontoceti
distributions of delphinid Basin in Atlantic
species in Massachusetts western Ocean
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FIGURE S2. Correlation Matrix of the different categories of Biological Information in the Reviewed Studies
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MATERIAL SUPLEMENTAR CAPITULO IlI: Assessment of acoustic metrics for

monitoring humpback whale local population abundance

Table S1. Table S1. Sampling effort in 2014, 2015, 2018, and 2019. The start and end dates of the periods during
which visual and acoustic monitoring were conducted simultaneously are presented, the total number of one-hour

visual scans performed per year, and the sample size for the acoustic indicators

Sampling effort

Year Start End Scans Daytime Nighttime Total
date date performed acoustic acoustic acoustic

(mm/dd) (mm/dd) (n) effort (n) effort (n) effort
(n)
2014 - stage 1 07/11 07/31 8 8 0 8
2014 - stage 2 09/03 10/01 10 10 0 10
2015 09/17 10/25 10 10 10 20
2018 08/14 10/17 20 17 20 37
2019 07/17 10/10 23 23 23 46

Table S2. Characteristics of the acoustic recorders used in each year. This table presents the recorder version,

sampling rate (Hz), system sensitivity (dB re 1 V/uPa), and the distance from the coast (km) for each year of

monitoring.
Characteristics of the acoustic recorders (Pods)
Year Recorder Sampling rate System sensitivity (dB Distance from coast
version (H2) re 1 V/uPa) (km)
2014 1 11,025 -150 2.56
2015 1 11,025 -150 2.57

2018 3 16,000 -146 2.54
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2019 3 16,000 -146 2.02

Figure S3. Data collection effort during the years 2014, 2015, 2018, and 2019, with visual and acoustic monitoring
conducted simultaneously. The day of the year is shown continuously, where 180 corresponds to June 29 and 320

to November 16.
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Figure S4. Pearson correlation matrix of sound pressure levels (RMS SPL) across the frequency bands used in the
calculation of TOL. The strong collinearity observed among the bands led to the decision not to include them

individually in the predictive models.
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